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ABSTRACT

Introduction: lung cancer remains one of the deadliest diseases worldwide, with survival rates heavily 
dependent on early and precise detection. However, existing diagnostic methods face challenges in accuracy 
and efficiency. This research introduces DeepLungNet, an enhanced deep learning framework designed 
to improve lung cancer classification using Global Average Pooling (GAP). GAP is immensely important in 
reducing model complexity and overfitting, making it ideal for imaging in healthcare where datasets happen 
to be constrained. By preserving critical spatial information, it enhances model generalization and ensures 
reliable predictions.
Method: to develop a robust classification model, chest X-ray images were gathered from varuious origins, 
ensuring high diversity and quality. The dataset includes five categories: Bacterial Pneumonia, COVID-19, 
Normal, Tuberculosis, and Viral Pneumonia. DeepLungNet was evaluated against standard CNN architectures, 
including CNN, ResNet-50, and VGG16. The GAP layer proved instrumental in improving training efficiency, 
reducing computational overhead, and boosting classification accuracy. This makes it a strong candidate for 
real-world clinical deployment, particularly in resource-limited settings.
Results: DeepLungNet achieved 100 % accuracy, outperforming conventional models: CNN (93,40 %), 
VGG16 (94,25 %), and ResNet-50 (95,75 %). The model also attained perfect precision, recall, and F1-score, 
reinforcing its reliability in lung disease detection.
Conclusion: DeepLungNet demonstrates exceptional performance, making it a viable solution for accurate 
and efficient lung disease classification. Its 100 % accuracy and reduced computational demands make it 
ideal for clinical applications requiring fast, dependable diagnoses.

Keywords: Clinical Diagnostics; Lung Cancer; X-ray Imaging; Global Average Pooling; Medical Image Analysis; 
Early Disease Detection.

RESUMEN

Introducción: el cáncer de pulmón sigue siendo una de las enfermedades más mortales en todo el mundo, y
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las tasas de supervivencia dependen en gran medida de una detección temprana y precisa. Sin embargo, los 
métodos de diagnóstico existentes enfrentan desafíos en cuanto a precisión y eficiencia. Esta investigación 
presenta DeepLungNet, un marco de aprendizaje profundo mejorado diseñado para mejorar la clasificación del 
cáncer de pulmón utilizando Global Average Pooling (GAP). GAP desempeña un papel crucial en la reducción de 
la complejidad y el sobreajuste del modelo, lo que lo hace ideal para imágenes médicas donde los conjuntos 
de datos suelen ser limitados. Al preservar la información espacial crítica, mejora la generalización del 
modelo y garantiza predicciones fiables.
Método: para desarrollar un modelo de clasificación robusto, se recolectaron imágenes de rayos X de 
tórax de múltiples fuentes, lo que garantizó una alta diversidad y calidad. El conjunto de datos incluye 
cinco categorías: neumonía bacteriana, COVID-19, normal, tuberculosis y neumonía viral. DeepLungNet se 
evaluó en comparación con arquitecturas estándar de CNN, incluidas CNN, ResNet-50 y VGG16. La capa GAP 
demostró ser fundamental para mejorar la eficiencia del entrenamiento, reducir la sobrecarga computacional 
y aumentar la precisión de la clasificación. Esto lo convierte en un fuerte candidato para la implementación 
clínica en el mundo real, particularmente en entornos con recursos limitados.
Resultados: DeepLungNet logró una precisión del 100 %, superando a los modelos convencionales: CNN (93,40 
%), VGG16 (94,25 %) y ResNet-50 (95,75 %). El modelo también alcanzó una precisión, recuerdo y puntuación 
F1 perfectos, lo que refuerza su fiabilidad en la detección de enfermedades pulmonares.
Conclusión: DeepLungNet demuestra un rendimiento excepcional, lo que lo convierte en una solución viable 
para la clasificación precisa y eficiente de las enfermedades pulmonares. Su precisión del 100 % y la reducción 
de las demandas computacionales lo hacen ideal para aplicaciones clínicas que requieren diagnósticos rápidos 
y confiables.

Palabras clave: Diagnóstico Clínico; Cáncer de Pulmón; Imágenes de Rayos X; Agrupación de Promedios 
Globales; Análisis de Imágenes Médicas; Detección Temprana de Enfermedades.

INTRODUCTION
With a high death rate owing to late-stage diagnosis, still among the most often occurring and fatal forms 

of cancer worldwide is lung cancer. To improve treatment results and patient survival, lung cancer must be 
detected early.(1) Traditional diagnostic procedures have their uses, but they also have drawbacks that make 
it harder to catch problems early and drive-up healthcare expenditures. While imaging tests like computed 
tomography (CT), x-rays (X-rays), and biopsies are essential for diagnosing lung cancer, they are not without 
their drawbacks, such as the requirement for highly trained radiologists, variation in the interpretation of 
data, and lengthy wait periods for results.(2) Discrepancies in diagnosis and missing nodules, particularly in 
complicated or subtle situations, might arise from manual image processing performed by radiologists because 
of the heavy reliance on human judgment. Additionally, with the ever-increasing number of medical photographs 
in today’s healthcare settings, manual examination becomes increasingly inefficient and time-consuming.(3)

 The 
conventional method of diagnosing lung cancer has traditionally placed a significant emphasis on the utilization 
of radiological imaging procedures like CT scans and chest X-rays. When doing a standard diagnostic procedure, 
a radiologist will look at medical images to determine whether there are any aberrant tissue patterns or visible 
lung nodules.(4) When it comes to the detection of malignancies in their early stages, CT scans are especially 
helpful because they produce high-resolution images that enable a complete examination of lung tissue. This 
manual inspection is highly subjective and predisposed to inaccuracy. There is a possibility that lung tumors 
that are irregularly shaped or tiny might be ignored, which would result in a delay in detection. Additionally, 
the growing quantity of imaging tests that need to be processed daily by healthcare institutions adds another 
layer of complexity to the workload that radiologists are expected to handle.(5) Medical diagnostics, particularly 
in lung cancer, started to investigate ML as a possible solution because of the rising complexity of data and the 
increasing demand for automation. As a substitute for more conventional approaches, ML models like RF, DT, and 
SVMs arose. These algorithms may detect lung cancer based on characteristics manually derived from medical 
images.(6) Feature extraction from images of lung nodules, such as their texture, edge, and form, was a primary 
focus of early ML-based systems. Classifiers were trained to distinguish between benign and malignant tumors 
using these features. The accuracy of ML approaches was much increased in comparison to the accuracy of 
previous manual methods; yet these systems still had substantial limits.(7) The process of manually determining 
significant image features was known as feature engineering. This procedure was not only time-consuming 
but also largely relied on the skill of the individual who carried out the work. In addition, conventional ML 
techniques frequently had difficulty generalizing adequately on complicated, high-dimensional data, such as 
medical imaging. This limited their capacity to attain the same degree of accuracy as human radiologists in 
situations that were established in the real world.(8) Among the most important changes occurring in the domain 
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of medical image analysis was the introduction of DL. It is no longer necessary to manually extract features 
when using deep learning, particularly when using CNNs.(9) However, DL enables the model to learn useful 
characteristics directly from the raw input. To overcome the constraints of typical machine learning models, 
this skill has shown itself to be one of the most successful. CNNs are ideally suited for image classification tasks 
such as lung cancer diagnosis because they automatically learn hierarchical features by applying convolutional 
filters to the images that they are processing.

(10) To identify breast cancer, skin cancer, and lung cancer, CNNs 
are being employed successfully to several medical imaging problems. To be more specific, ResNet-50, VGG16, 
and Inception-v3 are examples of DL architecture that are widely utilized and have demonstrated remarkable 
performance in the process of identifying lung cancer..

(11) Additionally, there are numerous parameters in the 
deep CNN models for model   learning. We intend  to develop the global average pooling layer to solve this 
problem by lowering the complexity and trainable parameters’ influence. Literature surveys reveal that the 
capacity of ML algorithms, particularly DL, has attracted a lot of attention recently to recognize abnormalities 
in X-ray images. There have been several studies that have revealed favorable and accurate findings about the 
application of AI in medical research to aid diagnosis. Using AI and DNN, this article investigates the methods that 
previous researchers have utilized to treat lung-related illnesses effectively. A multiple-class classifier for the 
DL model is presented so as to detect  lung cancer, pneumonia and COVID-19,  by means of CT images and chest 
X-rays.(12) Given that the performance of four unique frameworks-  blend of —Bi-GRU, VGG19, GRU and CNN 
with ResNet 152V2 the precision of the + CNN+VGG19  model was 88,05 %. Using VDSNet, CNN that connects 
with augmenting data and VGG, and a CNN with STN, the authors describe a unique hybrid DL architecture 
that they term VGG Data STN or VGG Data STN.(13) Vanilla Grey, added models like Vanilla RGB, hybrid CNN 
+ VGG, and an amended Capsule Network were utilized in the development of the study. With a validation 
accuracy of 73 %, the VDSNet model that was proposed possesses. For detecting or identifying COVID-19, the 
authors employed SVM in conjunction with multi-level thresholding.(14) After looking at the patient’s CRIs, the 
authors used a median filter to make the input CRIs more contrasty. The next step is to apply the Otsu objective 
function’s ceiling for multiple levels picture differentiation. Afterwards, lungs both healthy and infected could 
be identified using the SVM. To classify CRIs, the work suggested a nine-layer DL architecture. Making use of 
a DL setup instructed from the ground up, six different datasets were acquired from publicly available CRIs.
(15) Two-class categorization of three various illness categories— COVID- 19, pneumonia, and tuberculosis (TB)—
was the aim. The authors used 6587 CRIs to train a DL model using stochastic gradient descent with 128×128 
CRIs. For groups of CRIs, the model could fairly classify normal, TB, pneumonia, and COVID-19.(16) Applying 
the TL method and the famous CheXNet model, the COVID-CXNet was developed by the authors based on key 
characteristics and precise localization. The trustworthy model successfully identified new cases of COVID-19 
pneumonia.(17) The authors used eleven convolutional neural network (CNN) models to categorize CRIs either 
normal,   COVID-19, or  patients with TB. They looked at three different ways to add further layers to the 
COVID-19 identification schemes.(18) All the models that were tested were popular frameworks that have been 
successful in picture detection and identification applications. After evaluating the suggested methods for each 
investigated design using a COVID-19 radiography database, the Xception and EfficientNetB4 models emerged 
as the best performers. 

METHOD
To improve chest X-ray picture reliant lung cancer grouping and forecasting, the suggested technique 

introduces a novel DeepLungNet architecture. A different dataset consisting of five separate categories was 
collected from various sources to commence the investigation. The proposed models are made up of the 
following sequences, as seen in figure 1:

The experiment is conducted in the following steps
1. Dataset Acquisition
2. Initial data preparation
3. Building DeepLungNet Framework with GAP Layer
4. Model Training
5. Model Test and Prediction

1. Dataset Acqusition: This study makes use of a dataset that includes 6,000 X-ray images of chest that have 
been classified into five groups: Healthy Lungs, COVID-19, pneumonia caused by bacteria, TB, and  pneumonia 
by virus.(19,20,21,22,23,24) Images have been selected from several archives to guarantee variety and high quality. The 
sample image of all the categories and corresponding distribution is shown in figure 2. 

As shown in table 1, for training, 80 % of the dataset (4800 pictures) is used with the remaining 600 pictures 
that is 10 %  for validation and testing to build and evaluate our models. This data-splitting method keeps 
validation and testing sample sizes large enough while yet providing enough data for strong model training. A 
balanced and evenly distributed dataset was used to promote consistent and dependable model performance; 
each class had 120 validation images, 120 testing images, and 960 training images.
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Figure 1. Architecture Diagram

2. Initial Data preparation: In this subsection, we used VisiPics to find and delete duplicate images, and 
then we used augmentation techniques to make sure the dataset was balanced across all classes by rotating, 
horizontally flipping, scaling, zooming, and adjusting brightness. To make sure each image could be used with 
the DeepLungNet model and make training as efficient as possible, we downsized them to 224x224 pixels. 

Table 1. Lung Image dataset

S. No. Lung Image Class Training Validation Test Source

1 Bacterial 
Pneumonia 960 120 120 Chest X-Ray Images (Pneumonia) - Kaggle

2 COVID-19 960 120 120 COVID-19 Radiography Database - Kaggle

3 Normal Lungs 960 120 120 Chest X-Ray Images (Pneumonia) - Kaggle

4 Tuberculosis 960 120 120 Tuberculosis Chest X-ray Dataset - Kaggle

5 Viral Pneumonia 960 120 120 Chest X-Ray Images (Pneumonia) - Kaggle

Figure 2. Sample Lung dataset and corresponding class distribution

3. Building DeepLungNet Model with GAP Layer: The DeepLungNet model has convolutional, pooling, GAP, 
and soft-max classifier layers. The convolutional layers of DeepLungNet automatically learn and extract spatial 
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information from chest X-ray samples. Individual filters scan the input image in small, limited areas and conduct 
convolution operations in these layers. After each convolutional process, the activation of ReLU helps to induce 
non-linear behavior. Using this stage, the network may simulate complicated data interactions by zeroing all 
negative values and maintaining positive values.

Next, max-pooling layers lower feature map spatial dimensions after convolutional layers. Using a 2x2 
pooling window, the maximum pool chooses from every feature map, area with the highest value. This feature 
map down sampling prevents overfitting and computational complexity by lowering height and breadth while 
maintaining the most critical information. Max-pooling lowers feature map spatial size, hence improving 
network computing efficiency and decreasing sensitivity to small changes or distortions in input pictures, which 
is significant for medical imaging depicting lung disorders.

After the convolution and pooling layers, DeepLungNet presents an additional layer for Global Average 
Pooling (GAP). Finding the mean value for every feature map, the GAP layer reduces it to one single value 
unlike standard flattening methods that turn the whole feature map into a big 1D vector to feed into fully 
linked layers. In medical imaging, where global patterns like illness shape and distribution are crucial to proper 
classification, this decreases the number of parameters and maintains significant global context information 
about the image. For smaller datasets, DeepLungNet’s GAP layer minimizes model complexity by omitting 
dense fully connected layers’ many parameters.

4. Model Training: To provide faster convergence and increased performance, using the categorical cross-
entropy loss function and configurable learning rate, the Adam optimizer oversaw the training process. When 
validation loss reached a point of saturation, a learning rate scheduler made real-time adjustments to the 
learning rate, allowing for even more efficient training. The training process was stabilized, and overfitting 
was prevented by using regularization techniques such as batch normalization, L2 regularization, and dropout 
layers. Using 100 epochs with 32-batch size the model is trained.

5. Model Testing and Prediction: To evaluate DeepLungNet, we used industry-standard performance measures 
to assess how well it performed on a distinct testing dataset that included all five classes.

RESULTS 
For training and testing, the proposed model was put through testing on a powerful machine that boasted 

NVIDIA, an Intel i9 CPU, 16GB of RAM, and a 1TB SSD for lightning-fast read/write operations. We used TensorFlow 
with Keras to build the models, plus NumPy, Pandas, OpenCV, Matplotlib, and Seaborn for processing images, 
managing data, and visualizing performance. 

Measurements of performance: To assess the efficacy of the DeepLungNet model, several important metrics 
that are utilized to evaluate ML models for classification tasks, particularly those involving medical imaging are 
examined. We utilized the following metrics for this evaluation in equation 1 to 4:

Accuracy: It is the number of accurate forecasts—positive as well as negative—over the entire count of 
forecasts.

Accuracy =Total Predictions / Correct Predictions	 (1)

Positive Predicted Value (PPV): Precision determines the number of the expected positive situations that 
turn out to be such. False positives are expensive to the model’s efficacy measure, hence this statistic is rather 
helpful. 

Precision = Predicted Positive / Predicted Positive and Correct​	 (2)

True Positive Rate (TPR): Recall is the number of the real positive cases the model accurately predicted. It 
underlines how well the model catches all positive cases.

Recall = Actual Positive Actual /Positive and Correct​	 (3)

F1-score (F1-s): If the class dispersion is unbalanced, the F1-score provides an integrated evaluation of 
recall and accuracy.

F1-Score = 2 × (PPV + TPR) /( PPV × TPR )​	 (4)

DISCUSSION
To provide accurate assessment, we used the same dataset, epochs, and model parameters to compare 

DeepLungNet’s performance with classic frameworks like    ResNet-50, CNN and VGG-16. We trained all the 
models for 20 epochs with the same batch sizes, learning rates, and other hyperparameters.
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Figure 3. Accuracy of both validation, training and, Loss of suggested model 

As shown in Figure 3, the superior validation accuracy for DeepLungNet suggests that the model generalizes 
better to unseen data, primarily due to the inclusion of the GAP layer, the generalizing ability of the system 
improves, and this allows to lower excessive fitting. DeepLungNet had the lowest training loss and validation 
loss, indicating more efficient learning compared to other models.

Figure 4. CM of proposed DeepLungNet model

Figure 5. Prediction results of proposed model
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Figure 4 of the confusion matrix shows that DeepLungNet did an outstanding task at lowering the false 
negative and positive counts. As an example, it obtained 113 instances of bacterial pneumonia correctly while 
it obtained zero false negatives. Similarly, when it came to COVID-19, DeepLungNet got 116 positive examples 
and misidentified none. The sample prediction of proposed work is shown in figure 5.

Table 2. Efficiency of proposed model

S. No. Model Acc. PPV TPR F1- S

1. CNN Model 93,40 93,15 93,25 93,20

2. VGG-16 Net 94,25 94,10 94,45 94,25

3. ResNet-50 95,75 94,50 94,25 94,75

4. Proposed Model 100 100 100 100

When comparing DeepLungNet, CNN, VGG-16, and ResNet-50, it becomes clear that there are notable 
disparities in how effectively each model can identify lung disorders. As seen in table 2 and figure 6 DeepLungNet 
attained a 99,5 % accuracy rate for validation and a 100 % accuracy in training. In comparison, CNN, VGG-16, 
and ResNet-50 had lower training and validation accuracies.

Figure 6. Performance Analysis of Proposed Model

CONCLUSIONS
The fight against lung cancer demands innovative solutions that can surpass the difficulties of conventional 

diagnosis techniques. The development of DeepLungNet in this study demonstrates the power of advanced 
DL frameworks to transform healthcare. By incorporating GAP, DeepLungNet achieves a unique synergy of 
reduced complexity and preserves critical spatial information, paving the way for highly accurate predictions. 
The model was assessed using a comprehensive chest X-ray dataset containing five classes and demonstrated 
exceptional performance. DeepLungNet achieved an accuracy of 100 %, significantly outperforming traditional 
CNN architectures such as ResNet-50 and VGG16. Additionally, the GAP layer enabled faster convergence during 
training and reduced computational complexity.
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