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ABSTRACT

Introduction: deep learning (DL)–based computer vision has emerged as a promising tool for precision 
agriculture, particularly for detecting crop diseases and pests automatically. This study evaluated the 
comparative performance of three state-of-the-art DL architectures for automatic identification of cacao 
pests and diseases using image analysis.
Method: a reproducible pipeline was implemented, encompassing image preprocessing, stratified cross-
validation, and inferential statistics through repeated-measures ANOVA. The dataset comprised 4,390 images 
divided into three highly unbalanced classes: Healthy, Black Pod Rot, and Pod Borer. The architectures—
ResNet50, EfficientNet-B0, and ViT-B/16—were fully fine-tuned using the AdamW optimizer, early stopping, 
and a dynamic learning-rate scheduler.
Results: all models achieved mean macro-F1 scores above 0,96, with no statistically significant differences 
observed among them (F = 0,278, p = 0,7645). Training curves showed rapid convergence and inter-fold 
stability, indicating consistent generalization without overfitting.
Conclusions: performance outcomes suggest that the effectiveness of the detection system relies more 
on pipeline design and class-balance management than on the specific DL architecture used. The findings 
contribute to developing reproducible, efficient intelligent systems for cacao phytosanitary monitoring and 
support the integration of artificial intelligence into precision agriculture practices.

Keywords: Agricultural Informatics; Automated Classification; Image Preprocessing; Model Evaluation; 
Stratified Validation. 

RESUMEN

Introducción: el aprendizaje profundo (deep learning, DL) aplicado a la visión por computadora se ha 
consolidado como una herramienta prometedora en la agricultura de precisión, especialmente para la 
detección automática de plagas y enfermedades en cultivos. El presente estudio evaluó el desempeño 
comparativo de tres arquitecturas avanzadas de DL para la identificación automática de plagas y enfermedades 
del cacao mediante análisis de imágenes.
Método: se implementó un pipeline reproducible que incluyó preprocesamiento de imágenes, validación 
cruzada estratificada y análisis estadístico inferencial mediante ANOVA de medidas repetidas. El conjunto 
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de datos comprendió 4 390 imágenes distribuidas en tres clases altamente desbalanceadas: Healthy, Black 
Pod Rot y Pod Borer. Las arquitecturas ResNet50, EfficientNet-B0 y ViT-B/16 fueron ajustadas completamente 
(fine-tuning total) y entrenadas con el optimizador AdamW, parada temprana y programador dinámico de tasa 
de aprendizaje.
Resultados: todos los modelos alcanzaron valores medios de F1 macro superiores a 0,96, sin diferencias 
estadísticamente significativas entre ellos (F = 0,278, p = 0,7645). Las curvas de entrenamiento mostraron 
una convergencia rápida y estabilidad entre pliegues, sin evidencias de sobreajuste.
Conclusiones: los resultados indican que la eficacia del sistema depende en mayor medida del diseño del 
pipeline y del control del desbalance de clases que del tipo de arquitectura empleada. Los hallazgos aportan 
a la implementación de sistemas inteligentes reproducibles y eficientes para el monitoreo fitosanitario 
del cacao, promoviendo la adopción de soluciones basadas en inteligencia artificial en la agricultura de 
precisión.

Palabras clave: Agroinformática; Clasificación Automática; Evaluación de Modelos; Preprocesamiento de 
Imágenes; Validación Estratificada.

INTRODUCTION
Cocoa (Theobroma cacao L.) is one of the most important agricultural crops worldwide, playing a key role in 

the economies of tropical countries and generating income for millions of small producers.(1,2,3,4) Its fermented 
and dried beans are the essential raw material for the chocolate industry and various confectionery products.
(5,6) However, cocoa production faces serious threats from fungal diseases and pests that drastically reduce 
yields and compromise bean quality, affecting the global competitiveness of the value chain.(7,8,9) Among the 
most relevant pathologies are Black Pod Rot, caused by Phytophthora spp., and Pod Borer, both responsible for 
significant economic losses in tropical production areas.(10,11,12)

Traditionally, the detection of these conditions has been based on visual inspections carried out by 
farmers or specialists, a subjective procedure that depends on individual experience and morphological 
interpretation of symptoms.(13,14) This approach, in addition to being slow and costly, presents high variability 
in diagnostic accuracy, which delays the application of effective control measures and increases the spread of 
the disease. Consequently, the agricultural industry demands more reliable, rapid, and reproducible methods 
for the early identification of pests and diseases, which will optimize management processes and improve 
crop productivity.(15,16,17)

In this context, advances in computer vision and machine learning (ML) have opened up new opportunities 
for the automation of diagnostic tasks in precision agriculture.(18,19) These technologies allow large volumes of 
visual data to be analyzed using algorithms capable of recognizing complex patterns in images of leaves, fruits, 
or stems.(20,21) By combining optical hardware and digital image processing software, artificial vision systems 
(AVS) have established themselves as non-destructive, fast, and cost-effective tools for the characterization 
and classification of agricultural products, achieving levels of accuracy comparable to and even superior to 
those obtained by human experts.(22,23,24)

Deep learning (DL), as an evolution of ML, has revolutionized the field of computer vision by introducing 
models capable of learning hierarchical representations directly from data.(25,26) These approaches allow relevant 
features to be automatically extracted from images, eliminating the need for manual attribute engineering 
and increasing the capacity for generalization in complex tasks.(27) Thanks to its multilevel architecture, DL has 
demonstrated outstanding performance in the detection, segmentation, and classification of visual patterns, 
establishing itself as the dominant paradigm in agricultural diagnosis, quality control, and automated crop 
monitoring applications.(28,29,30)

However, the current literature reveals significant limitations. Most studies focus on a single architecture 
or evaluate models without applying statistical methods that allow their performance to be compared with 
inferential significance. This lack of rigorous comparative analysis makes it difficult to clearly identify which 
architectures are most stable, accurate, and efficient in agricultural contexts with limited computational 
resources. In addition, most experiments lack cross-validation schemes or reproducible protocols, making it 
difficult to replicate results and adopt them in practice.

Given this gap, there is a need for systematic evaluations that compare contemporary deep learning 
approaches under a controlled experimental framework. These models present different trade-offs between 
accuracy, complexity, and computational efficiency, making it essential to analyze their performance in automatic 
classification tasks for agricultural pests and diseases. Evaluating their comparative behavior allows technical 
guidelines to be established for their implementation in intelligent monitoring and automated phytosanitary 
diagnosis systems, promoting solutions that combine high performance, stability, and operational viability in 
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real production environments.(31)

This study proposes a deep learning-driven computer vision approach aimed at the early and automatic 
detection of pests and diseases in cocoa fruits. A reproducible methodological process was implemented 
that integrates preprocessing strategies, stratified cross-validation, and statistical analysis to compare 
the performance of different deep learning models. The objective is to identify visual patterns associated 
with different phytosanitary conditions and evaluate the stability and accuracy of the models in automated 
classification scenarios. This work seeks to provide technical and practical evidence for the development 
of intelligent agricultural diagnostic systems, promoting sustainability and efficiency in global cocoa 
production.(32)

METHOD
The experimental development was structured in a reproducible computer vision pipeline designed for 

the automatic classification of diseases in cocoa fruits. The process comprised the following phases: (1) 
data exploration (EDA), (2) preprocessing, (3) training with stratified cross-validation, (4) evaluation using 
classification metrics, and (5) inferential statistical analysis to compare model performance. This methodological 
framework ensures the traceability of results and comparability between configurations, allowing the study to 
be replicated in different production contexts or with new datasets.

Data set and initial preparation
The image set called “Cacao Diseases” was used, obtained through Kaggle (folders by class), consisting of 

4390 RGB images of cacao fruits labeled in three categories: Black Pod Rot (943), Pod Borer (103), and Healthy 
(3344). The images were organized under the ImageFolder scheme (one folder per class) for direct consumption 
by PyTorch. Before training, a basic EDA was performed: first, a count per class to identify imbalances, then 
sampling of image sizes to estimate resolution variability, and finally, a visual mosaic of examples per class. Any 
corrupt or unreadable images were discarded.

Experimental design and partitioning
To obtain robust estimates and enable statistical comparison between architectures, 5-fold stratified cross-

validation was applied (same distribution per class in each fold). In each fold, each of the three models was 
trained and validated on the same partitions, which subsequently allowed the fold to be treated as a “subject” 
in the repeated measures analysis. A global seed (42) was set to ensure reproducibility.

Preprocessing and augmentations
In order to preserve color signals relevant to symptoms such as spots, mycelium, or discoloration, moderate 

magnification parameters and standard ImageNet normalization were used:
Training: 
train_tf = transforms.Compose([
     transforms.Resize(int(img_size*1.15)),
      transforms.RandomResizedCrop(img_size, scale=(0.8, 1.0)),
      transforms.RandomHorizontalFlip(),
      transforms.RandomRotation(10),
      transforms.ToTensor(),
      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD),
])
Validation: 
eval_tf = transforms.Compose([
      transforms.Resize(int(img_size*1,15)),
      transforms.CenterCrop(img_size),
      transforms.ToTensor(),
      transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD),
    ])

The input size was set to 224×224px to allow compatibility with the ImageNet standard and improve 
computational efficiency. The transformations in the augmenters were conservative, with the aim of not 
distorting fine features in the lesions.

Models evaluated
Three deep learning architectures widely used in recent studies of agro-phytopathological image classification 

were evaluated: ResNet50(33), EfficientNet-B0(34), and Vision Transformer (ViT-B/16)(35). All networks were pre-
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trained on the ImageNet-1K dataset, with the aim of leveraging general visual representations learned from 
millions of natural images. Subsequently, the output layers were reconfigured to adapt them to the specific 
domain of the problem. In the case of ResNet50, the final layer was replaced by a fully connected layer with 
three neurons corresponding to the classes of interest. In EfficientNet-B0, the last layer of the classifier was 
replaced by a three-class output, while in ViT-B/16, the original classification component was replaced by a 
linear layer with the same output dimensionality.

In all three models, a complete adjustment of the parameters (total fine-tuning) was performed, instead 
of freezing the pre-trained convolutional or attention layers. This methodological decision responds to the 
substantial difference between the source domain, represented by ImageNet, based on natural objects and 
general scenes, and the target domain of the present study, focused on images of cocoa fruits affected by 
lesions and pests. Comprehensive weight adjustment allows architectures to learn more specific discriminative 
representations of the phytopathological context, optimizing the model’s sensitivity to subtle visual patterns 
and textures associated with different fruit health states.

Training configuration
Model training was implemented using the PyTorch framework, applying a uniform set of hyperparameters 

to ensure comparability between architectures. The AdamW(36) optimizer was used with an initial learning 
rate of 1×10⁻⁴ and a weight decay parameter of 1×10⁻⁴, configurations that balance gradient stability and 
model regularization during learning. The selected loss function was Cross-Entropy Loss, suitable for multi-
class classification problems. The batch size was set at 32 images per iteration, and the training process was 
run for a maximum of 10 epochs per fold, within the stratified cross-validation scheme. To dynamically adjust 
the learning rate, a ReduceLROnPlateau scheduler was incorporated, which reduces the learning rate value by 
50 % when the validation loss shows no significant improvement. Likewise, an early stopping mechanism was 
implemented with a patience of three epochs, selecting as the optimal point the checkpoint corresponding to 
the highest macro F1 value achieved in validation. This set of strategies made it possible to control overfitting, 
stabilize convergence, and optimize the use of computational resources, which is suitable for both environments 
with hardware limitations and inference scenarios on edge devices.

Fold evaluation protocol
At the end of each epoch, the fold validation set was evaluated and, once the stopping criterion was 

activated, the best model state was loaded to compute the final fold metrics: Accuracy, Macro F1, Macro 
Precision, and Macro Recall. A classification report by class (precision/recall/F1) and the confusion matrix were 
also generated.

The confusion matrices per fold were stored and then aggregated by model in two ways: by sum of absolute 
counts and by a normalized version per row (recall per class), in order to analyze systematic confusion patterns 
between classes without a single fold dominating the interpretation.

Statistical comparison between models
To compare the average performance of the three architectures, a statistical design of repeated measures was 

applied, considering the five folds generated in the cross-validation. First, a long-format table was constructed 
that included as factors the fold (treated as a subject), the model (considered as an intra-subject factor with 
three levels), and the F1 macro response metric. Subsequently, a repeated measures analysis of variance 
(ANOVA-RM) was performed using the model as an intra-subject effect and the fold as the unit of observation, 
establishing a significance level of α = 0,05. In cases where statistical significance was detected, a post-hoc 
analysis was performed using paired t-tests between each pair of models, applying the Bonferroni correction to 
control for cumulative type I error. This approach allowed for a robust evaluation of the differences attributable 
to architecture, controlling for the variability introduced by the validation partitions and avoiding conclusions 
dependent on a single training-validation split.

RESULTS
Data exploration (EDA)

After initial exploration of the dataset, 4,390 images were counted, distributed across three classes with 
considerable imbalance: the Healthy category contained 3,344 images (76,2 %), while Black Pod Rot had 
943 (21,5 %) and Pod Borer only 103 (2,35 %), representing an approximate ratio of 32,5 times between the 
majority and minority classes. Geometric analysis performed on a sample of 300 images indicated that all 
captures have an aspect ratio close to 1,0, with resolutions ranging from 1080×1080 to 2160×2160 pixels, 
confirming the uniformity of the acquisition format. These observations justified the use of stratified cross-
validation to preserve the proportions per class in each fold, as well as the prioritization of the macro F1 
metric in the selection of checkpoints in order to mitigate the bias induced by class imbalance. Likewise, 
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it was decided to apply moderate data augmentations during training, seeking to improve the model’s 
generalization ability without compromising the integrity of the visual signals associated with the lesions 
(figure 1).

Figure 1. Class distribution graph

Overall model performance
Analysis of the overall performance of the models showed highly competitive performance among the three 

architectures evaluated. The Vision Transformer (ViT-B/16) model achieved the highest macro F1 mean, with a 
value of 0,9697 and a standard deviation of 0,0114, along with an average accuracy of 0,9788. ResNet50 ranked 
second, with an average macro F1 of 0,9683, followed by EfficientNet-B0, which scored 0,9666. The differences 
between the three models were minimal, with an average separation of approximately 0,3 percentage points 
between the best and worst performers in the macro F1 metric. This closely grouped behavior reflects the 
robustness of the architectures and confirms the effectiveness of the preprocessing and validation scheme 
adopted in the study (table 1).

Table 1. Summary of evaluation metrics by model

Model Accuracy 
Average

Dev. 
Accuracy

F1 mean F1 
Deviation

Prec. 
Average

Prec. 
Dev.

Recall 
Average

Recall 
Deviation

EfficientNet-B0 0,9756 0,0045 0,9666 0,0128 0,9690 0,0102 0,9651 0,0205

ResNet50 0,9811 0,0036 0,9683 0,0155 0,9803 0,0118 0,9575 0,0233

ViT-B/16 0,9788 0,0064 0,9697 0,0114 0,9800 0,0087 0,9604 0,0171

Statistical comparison (ANOVA and post-hoc)
The statistical comparison of the average performance between the three architectures was performed 

using a repeated measures analysis of variance (ANOVA-RM) applied to the F1 macro metric, considering the 
fold as the subject and the model as the intra-subject factor. The results showed no statistically significant 
differences between architectures (F = 0,278, p = 0,7645), suggesting homogeneous behavior in the average 
performance of the models. This finding was corroborated by paired post-hoc tests with Bonferroni correction, 
in which none of the pairwise contrasts reached statistical significance. In particular, the mean difference in 
macro F1 between ViT-B/16 and EfficientNet-B0 was approximately +0,0031 with a 95 % confidence interval and 
p≈0,25, while the difference between ViT-B/16 and ResNet50 was +0,0014, also not significant. Taken together, 
these results indicate that, although ViT-B/16 had the highest mean, the discrepancies observed were small and 
statistically attributable to sampling variability, confirming the robustness of the three architectures evaluated 
(table 2).
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Table 2. Post-hoc tests by model pair

Models t p_raw

ResNet50 vs EfficientNet B0 0,297661326 0,780781239

ResNet50 vs ViT-B/16 -0,370845959 0,729557

EfficientNet B0 vs ViT-B/16 -1,347132941 0,249193532

The evolution of the macro F1 during the training and validation process showed a stable convergence 
pattern in the three models, with no signs of overfitting and minimal fluctuations between folds. Figures 
2, 3, and 4 show the consistency of the validation curves corresponding to EfficientNet-B0, ResNet50, and 
ViT-B/16, respectively, confirming the stability of the optimization process and the reproducibility of the 
results.

Figure 2. Evolution of F1 Macro (validation) per fold in the EfficientNetB0 model

Figure 3. Evolution of F1 Macro (validation) per fold in ResNet50 model
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Figure 4. Evolution of Macro F1 (validation) per fold in the ViT-B/16 model

Consistency between folds and training dynamics
The consistency analysis between folds showed low variability in all experimental configurations, with 

standard deviations of the F1 macro metric close to one hundredth, reflecting high stability in the training and 
validation process. This behavior suggests that the decisions made during image preprocessing and the use of 
stratified cross-validation contributed to the robustness of the procedure, avoiding the influence of a dominant 
fold that could skew the overall averages. The detailed results for each architecture in the five folds are 
presented in table 3, which shows the consistency of the accuracy, precision, recall, and F1 metrics, evidencing 
balanced performance between models and partitions.

Likewise, the training and validation curves showed rapid convergence, reaching stability in less than 
ten epochs. The use of the learning rate scheduler favored the stabilization of loss in the final stages of 
training, while the early stopping criterion helped prevent overfitting. Taken together, these results confirm the 
reproducibility of the proposed pipeline and the inter-fold consistency of the models, supporting the validity of 
the conclusions derived from the comparative analysis.

Table 3. Stratified cross-validation metrics

Fold Model Accuracy F1 Precision Recall

1 ResNet50 0,9863 0,9862 0,9914 0,9814

1 EfficientNet-B0 0,9795 0,9799 0,9765 0,9834

1 ViT-B/16 0,9806 0,9807 0,9825 0,9789

2 ResNet50 0,9795 0,9539 0,9820 0,9299

2 EfficientNet-B0 0,9692 0,9614 0,9557 0,9676

2 ViT-B/16 0,9681 0,9610 0,9665 0,9560

3 ResNet50 0,9772 0,9538 0,9601 0,9479

3 EfficientNet-B0 0,9727 0,9488 0,9709 0,9305

3 ViT-B/16 0,9784 0,9543 0,9781 0,9343

4 ResNet50 0,9829 0,9829 0,9835 0,9823

4 EfficientNet-B0 0,9784 0,9645 0,9616 0,9675

4 ViT-B/16 0,9829 0,9754 0,9899 0,9619

5 ResNet50 0,9795 0,9645 0,9844 0,9463

5 EfficientNet-B0 0,9784 0,9783 0,9801 0,9765

5 ViT-B/16 0,9841 0,9769 0,9830 0,9713

The confusion matrices aggregated by model, obtained from the sum of the five folds, together with their 
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row-normalized versions, showed balanced behavior between classes, with no evidence of dominant systematic 
confusion patterns. Row normalization allowed for a detailed analysis of recall by class, showing slight 
oscillations between architectures that are consistent with the narrow range of macro F1 values previously 
reported. These variations do not alter the overall conclusion of the study: the three models show a consistent 
ability to correctly discriminate between the Black Pod Rot, Pod Borer, and Healthy categories, maintaining 
homogeneous performance across the evaluated dataset (figure 5).

Figure 5. Confusion matrices by model

DISCUSSION 
The results show that the three architectures evaluated offer competitive and stable performance for the 

automatic classification of cocoa diseases, with close macro F1 values and no statistically significant differences. 
This finding confirms that the effectiveness of the model does not depend strictly on the architecture used, 
but rather on the consistency of the preprocessing pipeline, stratified validation, and overfitting control. 
Consequently, the choice of reference model can be guided by operational and contextual implementation 
criteria: Vision Transformer (ViT-B/16), for its slight average advantage and ability to model global spatial 
relationships; ResNet50, due to its maturity, broad support in production libraries, and performance very close 
to the former; and EfficientNet-B0, when computational efficiency and reduction of the deployment footprint 
are prioritized.

These results support the findings of Ray et al.(25) and Deepa et al.(28), who highlight that deep learning 
models applied to agricultural diagnosis offer high levels of accuracy even with lightweight architectures, 
provided they are accompanied by consistent training strategies and adequately preprocessed data. They also 
confirm the trend observed by Lebrini and Ayerdi Gotor(21) and Shafay et al.(29), namely that the effectiveness of 
computer vision in the phytosanitary field depends more on methodological rigor than on the complexity of the 
model itself.

From an applied perspective, the results contribute to filling a methodological gap identified in recent 
literature: the lack of systematic comparisons between contemporary architectures under controlled statistical 
frameworks. In this sense, the study provides reproducible evidence that guides the selection of models based on 
the balance between accuracy, stability, and feasibility of implementation in resource-constrained agricultural 
environments, a line of research highlighted by Bono et al.(31) in the context of smart agriculture. Finally, 
future improvements should focus not so much on replacing architectures, but on optimizing complementary 
strategies such as class rebalancing, increases in specific data by injury type, and adaptive adjustment of 
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decision thresholds, following the recommendations of Song et al.(22) on the need to integrate robust pipelines 
that maximize generalization in agricultural computer vision applications.

CONCLUSIONS 
The study demonstrated that the deep learning architectures evaluated show statistically equivalent 

performance in the automatic detection of cocoa pests and diseases, achieving macro F1 values above 0,96 
and reduced standard deviations between folds. These results demonstrate the robustness of the implemented 
computer vision pipeline and the effectiveness of the preprocessing, validation, and regularization strategies 
employed. The absence of significant differences between models indicates that the selection of the approach 
can be guided by operational criteria, considering the balance between accuracy, computational efficiency, and 
scalability of deployment. Likewise, it is confirmed that the stability and generalization of the system depend 
mainly on the quality of training and the handling of class imbalance, rather than on the type of architecture 
used. Taken together, the findings contribute to the development of reproducible and scalable intelligent 
systems for phytosanitary monitoring, strengthening the integration of artificial intelligence in precision 
agriculture and its application in real production contexts.
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