

Categoría: Decisiones basadas en la evidencia

REVISIÓN SISTEMÁTICA

Exploring the connections between Microbiome and Dementia: systematic review

Explorando las conexiones entre Microbioma y Demencia: revisión sistemática

Antonio Matheus Teixeira Leite¹ 🝺 🖂, Javier González-Argote² 🝺 🖂

¹Universidad Abierta Interamericana. Facultad de Medicina y Ciencias de la Salud. Ciudad Autónoma de Buenos Aires, Argentina. ²Fundación Salud, Ciencia y Tecnología. Ciudad Autónoma de Buenos Aires, Argentina.

Cite as: Teixeira Leite AM, González-Argote J. Exploring the connections between Microbiome and Dementia: systematic review. Salud, Ciencia y Tecnología - Serie de Conferencias 2023; 2:336. https://doi.org/10.56294/sctconf2023336

 Recibido: 24-05-2023
 Revisado: 21-07-2023
 Aceptado: 22-09-2023
 Publicado: 23-09-2023

ABSTRACT

Introduction: disturbance in the balance of the intestinal microbiota, as an ecosystem, determines states of dysbiosis and dysregulation of the immune system, which are crucial for the onset of gastrointestinal and systemic diseases. Dementia is defined as an acquired syndrome, characterized by cognitive impairment and changes in mood or personality, which are severe enough to hinder social and occupational performance.

Objectives: to describe the scientific evidence on the relationship between the gut microbiome and the onset/progression of dementia, and how it influences the underlying pathological mechanisms of different types of dementia.

Methods: a search was conducted in Pubmed, Scopus, Web of Science from January 2000 to October 2022. Selecting abstracts of cohort and case-control studies evaluating the relationship between the gut microbiome and the onset/progression of dementia.

Results: the results of this review suggest that there is a significant interaction between gut microbiota and mental health, supporting the idea that the gut and brain are bidirectionally connected through the gut-brain axis. However, it is important to note that many of these studies have limitations, such as small sample sizes and varied research designs, making it difficult to draw definitive conclusions. Therefore, more research is needed to fully understand the underlying mechanisms and clinical relevance of these relationships.

Conclusions: this systematic review provides a comprehensive overview of the interaction between gut microbiota and mental health in diverse populations. The results suggest that gut microbiota may play an important role in mental health, but further studies are needed to confirm and better understand these relationships. These results have significant implications for research and the development of interventions targeting the gut microbiota as a potential approach to improve mental health in various conditions.

Keywords: Microbiota; Dementia; Neuroscience; Neuropathology; Systematic Review.

RESUMEN

Introducción: la perturbación en el equilibrio del microbiota intestinal, como ecosistema, determina estados de disbiosis y desregulación del sistema inmunológico, que son cruciales para la aparición de enfermedades gastrointestinales y sistémicas. Demencia se define como un síndrome

© Autor(es); 2023. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia *Creative Commons* (https://creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original sea correctamente citada.

adquirido, que se caracterizado por deterioro cognitivo y cambios en el estado de ánimo o la personalidad, los cuales son suficientemente graves como para obstaculizar el desempeño social y laboral.

Objetivos: describir la evidencia científica sobre la relación entre el microbioma intestinal y la aparición/progresión de la demencia, y cómo influye en los mecanismos patológicos subyacentes de diferentes tipos de demencia.

Métodos: se realizó una búsqueda en Pubmed, Scopus, Web of Science desde enero de 2000 hasta octubre de 2022. Seleccionando resúmenes de estudios de cohorte y de casos y controles que evalúen la relación entre el microbioma intestinal y la aparición/progresión de la demencia.

Resultados: los resultados de esta revisión sugieren que existe una interacción significativa entre el microbiota intestinal y la salud mental, lo que apoya la idea de que el intestino y el cerebro están conectados bidireccionalmente a través del eje intestino-cerebro. Sin embargo, es importante señalar que muchos de estos estudios tienen limitaciones, como el pequeño tamaño de las muestras y los variados diseños de investigación, lo que dificulta la extracción de conclusiones definitivas. Por lo tanto, se necesita más investigación para comprender plenamente los mecanismos subyacentes y la relevancia clínica de estas relaciones.

Conclusiones: esta revisión sistemática proporciona una visión global de la interacción entre el microbiota intestinal y la salud mental en diversas poblaciones. Los resultados sugieren que el microbiota intestinal puede desempeñar un papel importante en la salud mental, pero se necesitan más estudios para confirmar y comprender mejor estas relaciones. Estos resultados tienen implicaciones significativas para la investigación y el desarrollo de intervenciones dirigidas al microbiota intestinal como un enfoque potencial para mejorar la salud mental en diversas condiciones.

Palabras clave: Microbiota; Demencia; Neurociencia; Neuropatología; Revisión Sistemática.

INTRODUCTION

Seventy percent of the entire human microbiome is located in the gut, and the trillions of microbes normally found at that level are called the microbiota. Thus, it is the organ with the highest number of microbes in the body, and they belong to 9 different tribes: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, Cyanobacteria, Fusobacteria, Spirochaetes and Saccharibacteria. Although fungi and archaea may also be resident, they represent only 1 % of the total. The majority are Firmicutes and Bacteroidetes.^(1,2,3)

The density and composition of the microbiota in different parts of the intestine are influenced by chemical, nutritional and immunological factors. The small intestine has faster transit and greater absorption of antimicrobials and nutrients. These functions help limit the growth of bacteria, which is limited to those that can adhere to the epithelium or the mucus covering it and multiply rapidly. On the other hand, conditions in the large intestine lead to a dense and diverse community of mainly anaerobic bacteria that are able to anchor themselves to the mucus and digest indigestible carbohydrates from the diet or the mucus itself.⁽⁴⁾

The development of the intestinal microbiota depends on several factors, such as type of birth, gestational age, diet, health status and lifestyle. How individuals are born is the primary means of colonization. Those born by vaginal delivery receive the microbiota found in the vagina and maternal fecal matter. In contrast, infants born by cesarean section pick up microbiomes found on the skin of their mothers, health care workers and the hospital environment. From the first year of life, microbial diversity increases until it reaches adult-like characteristics around 2-3 years of age. There are no significant differences or changes in adulthood, except those related to genetic predisposition, gender or environmental exposure.^(2,3)

Prebiotics are substrates that are selectively utilized by the host microbiota and provide health benefits. Evidence from a variety of diseases supports the possibility that prebiotics have health-

promoting effects in healthy populations. Probiotics are defined as live microorganisms that, when ingested in sufficient quantities, provide health benefits to the host. A symbiotic couples at least one probiotic and one prebiotic.⁽⁵⁾

The metabolic functions of the intestinal microbiota are related to the degradation of complex polysaccharides and bile acids, the synthesis of short-chain fatty acids (SCFA) and vitamins, linked to nutritional effects on the intestinal barrier and the immune system. Thus, food is inferred as an essential element in the balance of the microbiota and host, and conceives its formation in children, as well as its function and structure in adults. In addition to food composition, nutrients, dietary patterns, there are other important factors that modulate the microbiota: medications, hygienic conditions, circadian rhythms, intermittent fasting, seasonal changes and industrialization.⁽⁵⁾

Microbial assemblages that stably constitute a given ecological niche live in homeostasis, determined by species richness and commensalism and mutualism relationships with the host, so that both benefit from symbiosis. This condition is known as eubiosis. In contrast, dysbiosis is a state of disequilibrium, where there is an alteration in the symbiotic state and is identified by qualitative and/or quantitative variations in the constitution and functioning of the microbiota. The use of antibiotics and other drugs, stress, genetic, dietary and lifestyle factors are associated with the cause of dysbiosis.⁽⁵⁾

Disturbance in the balance of the gut microbiota, as an ecosystem, determines states of dysbiosis and dysregulation of the immune system, which are crucial for the onset of gastrointestinal and systemic diseases.⁽³⁾

The gut-brain axis is a neural, hormonal and immune signaling connection system between the gut and the brain and allows the gut microbiota and its metabolites a potential pathway to the brain.⁽⁶⁾

This axis involves the gut microbiome, autonomic nervous system, central nervous system, enteric nervous system, neuroendocrine system, and neuroimmune system.7

It functions as a bidirectional system, allowing the brain to influence the digestive tract (such as peristalsis, mucin release and synthesis), and the immune system (regulation of cytokines produced by mucosal immune cells).⁽⁶⁾

The vagus nerve is one of the main sources of information transmission from the microbiota to the central nervous system. Neurohormones (serotonin, catecholamines, dopamine) are released from neuroendocrine cells in the gut to directly or indirectly regulate behavior.⁽⁷⁾

In addition to the microbiota intervening in the regulation, production and release of neurohormones, it is involved in the synthesis of SCFA at the intestinal level, which cross the blood-brain barrier and reach the hypothalamus, where it stimulates production of anorexigenic peptides, adjusts GABA levels and helps maintain the integrity of the blood-brain barrier.⁽⁷⁾

Microbiota activity also affects the hypothalamic-pituitary-adrenal axis and regulates cortisol discharge. Stressful situations or emotional instability can lead to changes in gastrointestinal peristalsis and permeability of the epithelium at that level. This may increase the risk of opportunistic infections of the microbiome or the entry of components of microbial metabolism that can damage tissues, trigger inflammatory responses, and alter the balance between the immune system and the microbiome.^(2,7)

During the onset and development of the senile state, physiological changes occur that affect the entire organism, including the dynamics and functioning of the digestive and immune systems, leading to changes in the composition and dynamics of the microbiota. Given the important role of the microbiota in mental health, dysregulation and/or changes in its composition are believed to contribute to the development and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's.⁽⁸⁾

Dementia is defined as an acquired syndrome, which is characterized by cognitive impairment and changes in mood or personality, which are severe enough to impair social and occupational performance.⁽⁹⁾

In addition to impaired cognitive activities (memory, language, executive function, etc.), dementia also has several neuropsychiatric symptoms, including: delusions, hallucinations, agitation/aggressiveness, altered motor activity, anxiety, restlessness, euphoria, euphoria, dishibition, apathy, irritability, changes in diet.⁽¹⁰⁾

Alzheimer's disease (AD), the most common form of dementia, is a neurodegenerative disorder associated with cognitive impairment. This is related to the extracellular accumulation of B-amyloid (AB) peptides in the form of senile plaques and the intracellular accumulation of hyperphosphorylated tau protein that forms neurofibrillary tangles. In addition, it is closely related to neuroinflammatory conditions.⁽¹¹⁾

Although the etiology of AD is not completely understood, it is known to originate from an interplay of genetic and environmental factors. Age is the most important risk factor, in addition to family history, susceptibility genes, and recently it has been proposed that the gut microbiome plays an important role in the development of the disease by regulating brain activity through the microbiotagut-brain axis.⁽¹²⁾

Mild cognitive impairment (MCI) is considered a preclinical stage of AD, indicating that the mnestic alterations do not coincide with the memory loss typical of normal senescence, although they are not significant enough to produce changes in daily life. Furthermore, the term MCI does not necessarily indicate a future development of dementia.⁽¹³⁾

Parkinson's disease (PD) is a neurodegenerative and systemic event due to the deposition of α -synuclein in the somas of neurons, leading to the formation of Lewy bodies and neuronal loss in the substantia nigra of the midbrain. Thus, as a result, motility symptoms appear, characterized by the tetrad of: rigidity, bradykinesia, resting tremor, gait and taxia disorders, and several non-motor symptoms such as dementia, depression, anosmia and changes at the level of the gastrointestinal tract, among which constipation is the most prominent.⁽¹⁴⁾

Objective: To describe the scientific evidence on the relationship between the gut microbiome and the onset/progression of dementia, and how it influences the underlying pathological mechanisms of different types of dementia.

METHODS

Study Design

Taking into account that there is abundant scientific literature on the subject under study, the research results were synthesized by means of a systematic review. If the quantitative data are sufficiently standardized, a meta-analysis will be performed.

This systematic review will be governed according to the PRISMA guidelines (preferred reporting elements for systematic reviews and meta-analyses).⁽¹⁵⁾

Study population

Scientific Papers addressing the relationship between the gut microbiome and the onset/progression of dementia, in the period January 2000 to October 2022, were included.

Inclusion Criteria

- Original articles with IMRyD typology developing cohort studies, clinical trials, other systematic reviews and meta-analyses.

Exclusion Criteria

- Review articles, Scientific Letters/Letters to the Editor, Clinical Cases, Editorials, Original Articles that correspond to preclinical studies and Observational Studies.

Selection and Sample Size

A search was performed in Pubmed, Scopus, Web of Science from January 2000 to October 2022. Selecting abstracts of cohort and case-control studies evaluating the relationship between the gut microbiome and onset/progression of dementia.

Data collection planning

- A literature search was performed in databases using as MESH descriptors: "Microbiota" and "Dementia".
- The publications were classified and according to the inclusion and exclusion criteria those that will form the study were selected.
- A critical reading of the abstracts and articles in extenso was carried out to assess their inclusion according to their relevance.
- The studies were classified according to levels of evidence and quality

Ethical and legal considerations

This study included secondary data sources and therefore does not correspond to an analysis from the ethical point of view, given that no experimentation or evaluations were performed on human beings/experimental animals.

RESULTS AND DISCUSSION

The systematic review analyzed a number of studies related to mental health and gut microbiota in diverse populations. Key findings are then discussed and compared with previous research, methodological limitations and errors are identified, conclusions are reached, and needs for future research are highlighted.^(16,17,18,19)

Regarding the relationship between aerobic exercise and mental health, studies showed that aerobic training increases plasma Cathepsin B (CTSB) enzyme levels, which correlates with improved cognitive performance. However, brain-derived neurotrophic factor (BDNF) levels decrease with exercise. This suggests that exercise may have beneficial effects on brain function through mechanisms related to CTSB and BDNF. These results are consistent with previous research that has demonstrated the positive effects of exercise on mental health.^(20,21,22,23,24,25)

Regarding the effects of gut microbiota on brain structure and function, studies revealed significant differences in microbiota composition between patients with schizophrenia and normal controls. In addition, a correlation was found between gut microbiota alpha diversity and brain gray matter volumetry (GMV) in patients with schizophrenia. These findings suggest that the gut microbiota may play a role in the observed alterations in brain structure and function in schizophrenia, supporting previous research that has explored the connection between microbiota and mental health.^(26,27,28,29,30,31,32,33,34)

Another important aspect was the relationship between APOE genotype and gut microbiota in the context of Alzheimer's disease. Specific microbiota profiles associated with APOE genotypes were found, and APOE4 carriers showed a loss of butyrate-producing bacteria in their microbiota. These findings indicate that the gut microbiota may play a role in modulating the risk of developing Alzheimer's disease in individuals with different APOE genotypes, supporting previous research on the relationship between microbiota and Alzheimer's disease.^(35,36,37,38,39,40,41,42,43,44)

Study	Country	Aim	Intervention	Type of research	Sample	Main results	Clinical/practical implications
Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease	United States, South Korea	To determine whether metabolomic profiles related to brain health are beneficially altered following 26 weeks of aerobic exercise training	Enhanced Physical Activity (EPA): 150min/week moderate-vigorous aerobic exercise Usual Physical activity (UPA): mantain sedentary status	· ·	23 asymptomatic late middle- aged adults, with familial and genetic risk for AD	AerobicexercisetrainingincreasesplasmaCathepsinB(CTSB)levels, whichcorrelatewithcognitiveperformance.Brain-derivedneurotrophicfator(BDNF)levels, on theotherhand, decreasewithexercisetraining.Klotholevelsremainunchangedbutarecloselyassociated withchangesin VO2 peak.Metabolomicanalysisrevealsincreased levelsofpolyunsaturated freefattyacids (PUFAs) andreductionsinceramides,sphingo-andphospholipids withexercise.Multiplemetabolites(~30 %)correlatewith changesin BDNF,but not CTSBorklotho.ThepositiveassociationbetweenCTSBand cognition, aswellas the	
						of lipid metabolites implicated in	Monitoring CTSB, brain-derived

7 Teixeira Leite et al.

dementia, support the	neurotrophic
beneficial effects of	factor (BDNF), and
exercise training on	klotho levels can
brain function.	serve as exercise
Phospholipids are key	biomarkers for
constituents of the	evaluating the
plasma membrane, and	effects of lifestyle
sphingolipids are	interventions on
multifunctional lipids	brain function.
that can regulate cell	
structure and signaling.	The findings of this
Sphingolipids are	study highlight the
transported by	importance of
lipoproteins, primarily	aerobic exercise
by LDL. Reductions in	training as a
several ceramides are	potential
observed with	preventive or
exercise.	delaying strategy
	for Alzheimer's
Exercise training also	disease and
leads to increased	provide insights
levels of	into the metabolic
polyunsaturated fatty	and biomarker
acids (PUFAs) such as	changes associated
dihomo-linolenate,	with exercise-
arachidonate,	induced cognitive
docosapentaenoate,	improvements.
and docosahexaenoate.	
No significant changes	These results
are noted in saturated	suggest that
fatty acids.	exercise
	interventions
	targeting CTSB and
	lipid metabolites
	may have practical
	implications for
	promoting brain
	-

	health and
	reducing the risk of dementia in late
	middle-aged adults
	at risk for
	Alzheimer's
	disease
The gut China, To explore 16S rRNA Cohort study Patients with The study found th	
microbiome is USA, whether such sequencing with schizophrenia patients wi	
associated Japan diferences were structural magnetic (SZ): 38 schizophrenia (SZ) ha	-
with brain associated with resonance imaging significantly differe	t play a role in the
structure and brain structure (sMRI) and resting- Demographicall gut microbio	a alterations of brain
function and function state functional (rs- y matched compared to norm	
in schizophrenia between patients fMRI) normal controls controls (NCs), wi	
with (NCs): 38 lower abundance	•
schizophrenia (SZ) Ruminococcus ar	-
and Roseburia and high	-
Demographically abundance matched normal Veillonella.	f gut microbiome in schizophrenia
controls (NCs)	patients could
MRI analysis reveale	•
that SZ patients ha	
lower gray matt	
volume (GMV) ar	-
regional homogenei	y disorder.
(ReHo) in certain bra	n
regions, as well	s Understanding the
3 · · · · · · · · ·	of relationship
low-frequency	between the gut
fluctuation.	microbiome and
	brain structure and
The alpha diversity	
the gut microbio showed a strong line	•
relationship with bo	
GMV and ReHo.	new therapeutic
	approaches.

9 Teixeira Leite et al.

In SZ patients, the	
abundance of the genus	Targeting specific
Roseburia was	bacterial taxa,
negatively correlated	such as
with ReHo indexes in	Ruminococcus,
the right STC, left	Roseburia, and
cuneus, and right MTC.	Veillonella, could
	potentially be
These findings suggest	explored as a
that the gut	treatment strategy
microbiome may play a	for schizophrenia.
role in the alterations	
of brain structure and	The findings
function observed in	highlight the
schizophrenia.	importance of
	considering the
	gut-brain axis and
	the potential
	impact of the gut
	microbiome on
	mental health
	disorders.
	Further research in
	this area could
	lead to the
	development of
	personalized
	interventions that
	target the gut
	microbiome to
	improve brain
	structure and
	function in
	schizophrenia
	patients.

APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer's disease pathophysiology	Ireland, United Kingdom	Explore the hypothesis that polipoprotein E (APOE) variation influences the microbiome composition and its subsequent metabolism	Healthy participants: analysis of their gut microbiota speciation Targeted- replacement (TR) transgenic mice: bacterial genomic DNA was extracted from fecal samples	Statistical analysis	 56 healthy participants 32 targeted-replacement (TR) transgenic mice 	APOE genotype is associated with specific gut microbiome profiles in both humans and APOE- targeted replacement (TR) mice. Several bacterial taxa, including Prevotellaceae and Ruminococcaceae, showed significantly different relative abundance between APOE genotypes. APOE4 carriers have a loss of butyrate- producing bacteria and short-chain fatty acids (SCFAs) in their gut microbiome. No significant differences were observed in the levels of haptoglobin and LBP (biomarkers of intestinal integrity) according to APOE genotype.	The study highlights the association between APOE genotype and specific gut microbiome profiles in both humans and mice, suggesting that the gut microbiome could be a potential target for mitigating the deleterious impact of the APOE4 allele on cognitive decline and the prevention of Alzheimer's disease (AD). The findings indicate that APOE4 carriers have a loss of butyrate- producing bacteria and short-chain fatty acids (SCFAs) in their gut microbiome, which may contribute to the
						0 71	may contribute to

mitigate APOE ge developn	rention point to the impact of motype in the nent of er's disease.	This suggests that interventions targeting the restoration of butyrate- producing bacteria in the gut microbiota could potentially help mitigate the impact of APOE genotype in the development of AD.
		The study also found no significant differences in the levels of haptoglobin and LBP (biomarkers of intestinal integrity) according to APOE genotype, indicating that the impact of APOE genotype on the gut microbiome is not mediated through changes in intestinal integrity.

Effects of Japan Lactiplantibacillu s plantarum OLL2712 on Memory Function in Older Adults with Declining Memory: A Randomized Placebo- Controlled Trial	To verify the Lactiplantibacillu s plantarum OLL2712 (OLL2712) protective effects on memory function in older adults	Active group: consumed either powder containing heat-treated OLL2712 cells Placebo group: a stick filled with 1 g of TK- 16AG dextrin without OLL2712	Double-blind placebo- controlled trial randomizing	Active group: 39 Placebo group: 39	The active group showed significant improvements in composite memory and visual memory scores compared to the placebo group. The active group also had a lower abundance ratio of Lachnoclostridium, Monoglobus, and Oscillibacter genera, which are involved in inflammation. The analysis of the effects of OLL2712 on	Overall, these findings provide insights into the potential role of the gut microbiome in the pathophysiology of Alzheimer's disease and suggest that modulating the gut microbiota could be a promising avenue for therapeutic interventions. The study provides evidence for the efficacy of Lactiplantibacillus plantarum OLL2712 (OLL2712) in improving memory function in older adults with declining memory. This suggests that OLL2712 could be used as an intervention for neurodegenerative conditions that cause dementia, as it has the ability to
					The analysis of the effects of OLL2712 on memory function without the influence	

of daily nutrition intake and participan characteristics all showed positiv results. The stuc demonstrated th efficacy of OLI2712 improving memoir function in older adul with early memoir decline.	t brain axis. The findings highlight the potential of y probiotics, e specifically n OLL2712, as a y preventive or s therapeutic y approach for memory decline in older adults. This could have significant implications for the aging population, as memory decline is a common issue in older individuals. The study also identified specific genera, such as Lachnoclostridium , Monoglobus, and Oscillibacter, which are involved in inflammation and were found to have a lower abundance in the active group. This suggests that
	OLL2712 may have

anti-inflammatory
effects, further
supporting its
potential as a
therapeutic
intervention for
memory decline.
The research
contributes to the
growing body of
evidence on the
role of the gut
microbiota in
cognitive function
and highlights the
importance of
considering the
microbiome-gut-
brain axis in the
development of
interventions for
cognitive decline.
Querall
Overall, the
findings of this
study suggest that
OLL2712
supplementation
could be a
promising strategy
for improving
memory function
in older adults and
potentially
preventing or
managing

Orthopedic China Surgery Causes Gut Microbiome Dysbiosis and Intestinal Barrier Dysfunction in Prodromal Alzheimer **Disease Patients**

microbiota and intestinal barrier function changes after orthopedic surgery in elderly patients with either normal cognition (NC) or prodromal а Alzheimer disease phenotype (pAD) comprising either subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI).

The gut microbiota, To investigate gut bacterial endotoxin (lipopolysaccharide) , tight junction (TJ) protein, and inflammatory cvtokines in blood were measured before surgery and on post-surgical day 1, 3, and 7 (or before discharge)

Prospective **Observational** Cohort Study

Normal cognition (NC):

40

Total:

patients

135

Subjective cognitive decline (SCD): 58 Amnestic mild cognitive impairment (aMCI): 37

Preoperative concentrations of plasma endotoxin were significantly higher in the prodromal Alzheimer disease (pAD) groups compared to the normal cognition (NC) group. Postoperative plasma endotoxin levels increased in both NC pAD and groups, peaking on postoperative day 3.

The short-chain fatty acid (SCFA)-producing bacteria were lower, while gram-negative bacteria and plasma claudin were higher preoperatively in the pAD groups compared to the NC group. After surgery, there was a decrease in SCFAproducing bacteria and an increase in both gram-negative bacteria and plasma claudin in the pAD groups relative to the NC group. pAD

neurodegenerative conditions associated with memory decline. Orthopedic surgery in elderly patients with prodromal Alzheimer's disease (pAD) can exacerbate gut microbiota dvsbiosis and intestinal barrier dysfunction, leading to cognitive deterioration. Surgery-induced perioperative metabolic stress and inflammatory responses are associated with gut microbiota alterations. Reduced abundance of short-chain fatty (SCFA)acid producing bacteria increased and levels of gramnegative bacteria and lipopolysaccharide were observed in

patients

Combination of China gut microbiota and plasma amyloid-B as a potential index for identifying preclinical Alzheimer's disease: a cross- sectional analysis from the SILCODE study	To characterize the gut microbiota in the preclinical stage of Alzheimer's disease (AD), to assess whether plasma AB indexes (AB40, AB42, and the ratio of AB40 and AB42) were changed in preclinical AD, and (3) to	Each participant underwent routine clinical evaluation, standardized neuropsychological assessments, blood sample tests, fecal sample amplicon sequencing, and AB- PET scans. T	Statistical analysis	34 AB-negative cognitively normal (CN-) participants 32 AB-positive cognitively normal (CN+) participants	The study found that individuals with preclinical Alzheimer's disease (AD) had significantly reduced plasma amyloid-8 (AB) levels compared to cognitively normal individuals without amyloidosis (CN-). The relative abundance of phylum Bacteroidetes was	Overall, this study highlights the importance of considering the gut microbiota and intestinal barrier function in elderly patients with pAD undergoing orthopedic surgery, as these factors can impact cognitive outcomes and systemic inflammation. The combination of gut microbiota and plasma amyloid-B (AB) markers may serve as a potential screening tool for identifying individuals with preclinical Alzheimer's disease (AD).
	AD, and (3) to investigate the discriminative power of the combined gut microbiota and plasma AB indexes in identifying				significantly enriched, while phylum Firmicutes and class Deltaproteobacteria were significantly decreased in individuals with	microbiota could offer novel strategies for the therapeutic management of AD-related cognitive decline.

individuals with	preclinical AD	
preclinical AD.	compared to CN-	The findings of this
	individuals.	study highlight the
		importance of
	The combination of	considering gut
	plasma AB markers,	microbiota
	altered gut microbiota,	alterations in the
	and cognitive	early stages of AD
	performance showed	and suggest that
	good discriminative	interventions
	power in identifying	targeting the gut
	individuals with	microbiota could
	preclinical AD from CN-	potentially delay
	individuals.	or prevent the
		progression of AD.
	A Venn diagram showed	p j
	that there were 1929	The study provides
	shared amplicon	insights into the
	sequence variants	association
	(ASVs) between the	between gut
	preclinical AD and CN-	microbiota,
	groups.	plasma AB levels,
	5.0000	and brain
	The study also reported	amyloidosis, which
	a negative association	could contribute to
	between global brain	the development
	AB burden and plasma	of non-invasive
	AB 42 /AB 40, family	diagnostic
	Desulfovibrionaceae,	methods for
	genus Bilophila, and	preclinical AD.
	genus phophila, and	proceinica AD.
	Faecalibacterium in all	Future studies with
	cognitively normal	larger sample sizes
	participants.	and standardized
	participants.	protocols are
	The alpha diversity of	needed to further
	gut microbiota did not	
	gut micropiota dia not	valuate tile

Effects of oral China health intervention	explored the effects of an oral health	Intervention group: received a 24-week oral health	Randomized controlled trial	Sixty-six patients wi mild AD	show significant differences among the CN-, CN, and cognitive impairment (CI) groups After 24 weeks of oral h health intervention, significant differences	potential of gut microbiota and plasma AB markers as diagnostic and therapeutic targets for AD Improving oral health through intervention
strategies on cognition and microbiota alterations in patients with mild Alzheimer's disease: A randomized controlled trial	intervention on the oral microbiome and cognitive function of patients with mild Alzheimer's disease (AD) and determined the influence on	intervention Control group: Received a 24-week routine care			were observed in Kayser-Jones Brief Oral Health Status Examination (BOHSE), Mini-Mental State Examination (MMSE), Neuropsychiatric Inventory (NPI), Nursing Home Adjustment Scale	strategies can have positive effects on cognition and microbiome in patients with mild Alzheimer's disease (AD). The oral health intervention led to
	influence on disease progression				Adjustment Scale (NHAS), and Alzheimer's Disease Cooperative Study-ADL (ADCS-ADL) scores between the intervention and control groups . The intervention group showed a higher abundance of normal	significant improvements in Kayser-Jones Brief Oral Health Status Examination (BOHSE), Mini- Mental State Examination (MMSE),
					abundance of normal oral flora in subgingival plaque compared to the control group. The intervention group had a higher proportion of alphaproteobacterial,	Neuropsychiatric Inventory (NPI), Nursing Home Adjustment Scale (NHAS), and Alzheimer's Disease Cooperative Study-

a w w h h r r a s s s s s s s s s s s s s s s s s	betaproteobacteria, and flavobacteria, while the control group had higher abundance ratios of actinobacteria, spirochaete, and synergistic bacteria. The intervention had statistically significant effects on BOHSE scores, MMSE scores, NPI scores, NHAS scores in both the ntervention and control groups . The intervention group showed significant within-group differences in BOHSE scores, MMSE scores, NPI scores, NHAS scores, MMSE scores, NPI scores, NHAS scores, MMSE scores, NPI scores, NHAS scores, MMSE scores, NPI scores, NHAS scores, And ADCS-ADL scores, MMSE scores, NPI scores, NHAS scores, And ADCS-ADL scores, Cores, NHAS scores, AMSE scores, NPI scores, NHAS scores, State scores, NPI scores, NHAS scores, ANDE scores, NPI scores, NHAS scores, Cores, NHAS scores, ANDE scores, NPI scores, NHAS scores, Scores, NHAS scores, ANDE scores, NHAS scores, Scores, NHAS scores, ANDE scores, NHAS scores, Scores, NHAS	ADL (ADCS-ADL) scores. The intervention group showed a higher abundance of normal oral flora in subgingival plaque, indicating a positive impact on oral microbiota. The intervention strategies can help patients with AD develop self-care skills, exercise decision-making and problem- solving abilities, and improve social behavior . The findings suggest that oral health interventions can slow cognitive decline in patients
T st w d sc N sc sc	The control group also	

					the development
					of low-cost
					intervention
					strategies based on
					self-determination
					theory, cognitive
					reserve
					hypothesis, and
					neuroinflammation
					to promote
					cognitive function
					in patients with
					mild AD
Altered Gut China, To characteriz	e Gut microbiota of all	Multicenter	Total of 105	Gut microbiota	The study suggests
Microbiota in Canada the g	It participants isolated	based	participants,	compositions were	that gut
Adults with microbiota	n from fecal samples	longitudinal	including 38	compared among three	microbiota may
Subjective subjective	were investigated	observational	normal controls	groups: normal controls	serve as a
Cognitive Decline: cognitive decline	-	study	(NC), 53	(NC), individuals with	susceptibility
The (SCD)	RNA (rRNA) Illumina		individuals with	subjective cognitive	factor for
SILCODE Study	Miseq sequencing		SCD, and 14	decline (SCD), and	Alzheimer's
	technique		patients	patients with cognitive	disease (AD) and
			with cognitive	impairment (CI).	that the alteration
			impairment (CI)		of gut microbial
				The abundance of	compositions may
				phylum Firmicutes,	be present in early
				class Clostridia, order	stages of AD.
				Clostridiales, family	T I (1.11)
				Ruminococcaceae, and	The findings
				genus Faecalibacterium	provide novel
				showed a progressive	insights into the pathophysiological
				decline from NC to SCD	mechanism of AD
				and CI. Specifically,	and highlight the
				the abundance of the	potential role of
				anti-inflammatory	gut microbiota as a
				genus	therapeutic target
				Faecalibacterium was	, , ,

significantly decreased in SCD compared with	for the treatment of AD symptoms.
NC.	Understanding the
Altered bacterial taxa	relationship
among the three groups	between gut
were associated with	microbiota and
cognitive performance.	cognitive decline can help in the
The study also used	development of
amyloid positron	interventions
emission tomography (PET) to validate the	targeting the gut microbiota to
alteration of gut	microbiota to prevent or delay
microbiota in SCD	the onset of AD.
participants with	
positive amyloid	The study also
evidence.	emphasizes the importance of
The study	early detection
demonstrated that the	and intervention in
anti-inflammatory gut	individuals with
microbiota was	subjective
significantly altered in SCD and suggested that	cognitive decline, as alterations in
the alteration of gut	gut microbiota
microbial compositions	were observed
may be present in early	even at this early
stages of Alzheimer's	stage.
disease.	Further research is needed to explore
The overall structure of	the specific
gut microbiota was	mechanisms
different among the	underlying the
NC, SCD, and CI groups,	association
suggesting distinct gut microbiota at different	between gut microbiota and

						stages of Alzheimer's disease	cognitive decline and to develop targeted interventions for AD based on modulating the gut microbiota
Cognitive impairment and CSF proteome modification after oral bacteriotherapy in HIV patients	Italy	To investigate whether a probiotic supplementation to cART patients modifies the cerebrospinal fluid (CSF) proteome and improves neurocognitive impairment	Neurocognitive evaluation and blood sampling at baseline and after 6 months of oral bacteriotherapy	Longitudinal interventiona l non- randomized study	13 HIV-positive patients [six patients living with HIV (PLHIV) and seven patients with a history of AIDS (PHAIDS)]	Oral bacteriotherapy supplementation to cART patients improved neurocognitive impairment and cognitive test performance in HIV- positive subjects. It also led to a reduction in the percentage of CD4+ CD38+ HLA-DR+ T cells at the peripheral level. The supplementation significantly modified the protein species composition and abundance in the cerebrospinal fluid (CSF), particularly those related to inflammation, such as B2-microglobulin, haptoglobin, albumin, hemoglobin, immunoglobulin heavy chains constant region, and transthyretin.	Oral bacteriotherapy supplementation in combination with cART could potentially improve neurocognitive impairment in HIV- positive patients, as shown by the improvement in cognitive test performance. This suggests that probiotic supplementation may have a beneficial effect on brain function in HIV patients. The reduction in the percentage of CD4+ CD38+ HLA- DR+ T cells after probiotic intake indicates a potential decrease in immune activation, which

Principal component analysis (PCA) showed distinct spatial distribution of CSF samples before and after supplementation, indicating an independent behavior of some samples.	could contribute to the amelioration of inflammation in both peripheral and central nervous system (CNS) levels. The modification of protein species composition and abundance in the cerebrospinal fluid (CSF) after supplementation, particularly those related to inflammation, suggests that oral bacteriotherapy may have a role in reducing inflammation at the CNS level. Further research is needed to understand the specific mechanisms by

					_	permeability, and systemic production of proinflammatory cytokines.
Exploration of Ch acupuncture therapy in the treatment of MCI patients with the ApoE ϵ 4 gene based on the brain-gut axis theory	nina To investigate the relationship between ApoE gene polymorphisms and the intestinal microbiome profile in patients with Mild cognitive impairment (MCI)	Intervention group: will receive acupuncture stimulation, exercise and cognitive training Control group: will receive sham acupuncture stimulation, exercise and cognitive training	Randomized assessor-blind controlled study	60 subjects with the ApoE ε4 gene and 60 subjects without the ApoE ε4	The study aims to investigate the improvement in cognitive function of MCI patients with and without the ApoE £4 gene due to acupuncture and the changes in gut microbiota community composition and abundance in MCI. Enrolment began in March 2021, and the total number of participants at the time of writing is 98 patients. The final results will be published in 2023. The study will provide data on the relationship between the gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. It will also provide data on the relationship between	The study explores the relationship between gut microbiota, AD susceptibility genes, and acupuncture in the treatment of MCI patients. The findings of this study may provide evidence for the use of acupuncture as a therapeutic method to improve cognitive function in MCI patients with and without the ApoE ε 4 gene. The study also aims to show that acupuncture can regulate the intestinal flora, which may have implications for the management of MCI and AD.

Probiotic China To explore intervention effects benefits multiple probiotic neural behaviors supplement in older adults on multiple	of consumed 2 g probiotics daily ation Control group: neural consumed a 2 g	Randomized controlled trial Total: 42 people, divided into a probiotic group (n=21) or a placebo	the gut microbiota and an AD susceptibility gene by integrating microbiologic and molecular approaches. The significance of diversity differences between groups will be evaluated with the Adonis test, with a test level of 0,05. Genus-level differences in faecal microbiota between MCI patients with and without the ApoE ε4 allele will be determined based on linear discriminant analysis (LDA) effect size (log linear LDA score 2,0 and P value 0,01) Probiotic supplementation improved cognitive function and sleep quality in older adults	between gut microbiota and AD susceptibility genes can contribute to the development of targeted interventions for individuals at risk of developing AD. The integration of microbiologic and molecular approaches in this study may provide valuable insights into the mechanisms underlying the effectiveness of acupuncture and the role of gut microbiota in MCI and AD. Probiotic supplementation can be considered as a potential non- pharmacological
with mild behaviors ir cognitive adults impairment with cognitive impairment	n older starch capsule placebo mild daily	group (n=21)	with mild cognitive impairment (MCI) compared to the control group. The improvement was mainly observed in	therapy for older adults with mild cognitive impairment (MCI). The use of probiotics may

	hala i
recall, attention and	help improve
calculation, visual	cognitive function,
space, and executive	sleep quality, and
function.	gastrointestinal
The total MoCA score,	symptoms in
which reflects	individuals with
cognitive function, was	MCI.
significantly increased	
in the probiotic group.	Probiotic
	intervention could
Probiotic intervention	potentially reduce
also led to	the risk of MCI
improvements in	progressing to
gastrointestinal	more severe forms
symptoms, including	of dementia, such
upper abdominal pain,	as Alzheimer's
acid reflux,	disease.
constipation, and dry	The findings
stools.	suggest that
	probiotic
The abundance of	supplementation
certain beneficial	could be a simple,
bacteria, such as	effective, and
Blautia,	easily acceptable
Lachnospiraceae, and	method for early-
Ruminococcus,	stage MCI
increased after	treatment.
probiotic	Healthcare
supplementation.	professionals
Probiotic	should consider
supplementation	incorporating
significantly increased	probiotic
serum brain-derived	supplementation
neurotrophic factor	as part of clinical
(BDNF) levels, which	nutritional
play a role in neuronal	interventions for
nutrition, protection,	
nachtion, protection,	mer patients.

					learning, and memory formation	The study highlights the importance of maintaining a healthy gut microbiome in older individuals, especially those with MCI, as it plays a role in cognitive function and overall well- being.
Effectiveness of	To evaluate the	Intervention group:	Pandomizod	20 patients	The primary outcome	Further research is needed to explore the specific mechanisms by which probiotics exert their beneficial effects on neural behaviors and cognitive function in MCI patients.
Yi-Zhi-An-Shen granules (YZASG) on cognition and sleep quality in older adults with amnestic mild cognitive impairment:	To evaluate the efficacy of Yi-Zhi- An-Shen granules (YZASG) in optimizing cognitive performance over time in elderly individuals with amnestic mild cognitive impairment	Intervention group: received YZASG three times a day Control group: received isodose placebo three times a day	Randomized, double-blind, placebo- controlled clinical trial	80 patients	The primary outcome measure of the study is the Alzheimer's Disease Assessment Scale- Cognitive Subscale (ADAS-Cog). Secondary outcome measures include the Mini-Mental State Examination (MMSE), Montreal Cognitive	The study aims to assess the effectiveness of Yi- Zhi-An-Shen granules (YZASG) on cognition and sleep quality in older adults with amnestic mild cognitive impairment (aMCI).

The safe compare will be recording and s treatmen adverse o and com assessme as vital clinical tests, neurolog electroca	co ety of YZASG eld d to placebo co assessed by co g the incidence the severity of an it-emergent events (TEAEs) Th ducting safety int ent tests such im signs, weight, he laboratory im physical and ca ical exams, ind ardiography aN	reserved ognition in the lderly, and sleep omplaints are ommon among nose with mnesia. herefore, hterventions that nprove sleep may elp maintain and nprove cognitive apacity in idividuals with WCI.
neurolog electroca (ECG), scans. The resu	ical exams, ind ardiography a <i>N</i> and CTMRI Th	idividuals with WCI. he study also ims to evaluate

					into the safety and effectiveness of YZASG in intervening aMCI among the elderly and its potential mechanisms via sleep quality, gut microbiota, and serum markers	YZASG, including its effects on gut microbiota and serum markers. Understanding these mechanisms could provide insights into the underlying processes involved in aMCI and potential targets for intervention. The results of this trial will contribute to assessing the safety and effectiveness of YZASG in intervening aMCI among the elderly and determining if it takes effect via the improvement of sleep quality, regulation of gut microbiota, and concentration of certain serum markers
A protocol paper United for the MOTION Kingdom Study—A longitudinal study in a cohort aged 60 years	To describeanddefinethecompositionofthegutmicrobiomeduring ageing	Participants will provide biological samples and complete questionnaires and cognitive tests	Longitudinal prospective cohort study	360 participants, including: Cohort 1 (n = 120): no subjective or	The MOTION study is a comprehensive longitudinal cohort study focusing on gut health and cognitive function in individuals	The MOTION study aims to obtain mechanistic knowledge of the role of the gut microbiome during

and older to	objective	aged 60 years and	normal healthy
obtain	cognitive deficit	older.	aging in order to
mechanistic	low dementia		develop strategies
knowledge of	risk	The study aims to	that will improve
the role of the gut	Cohort 2 (n =	determine the	lifelong health and
microbiome	120): subjetive	association between	wellbeing.
during normal	but no objective	changes in the gut	
healthy ageing in	cognitive deficit	microbiome and	The study will
order to develop	medium	physical and mental	provide insights
strategies	dementia risk	capacity in older	into the
that will improve	Cohort 3 (n =	individuals.	association
lifelong health	120): subjective		between changes
and wellbeing	and objective	The study will collect	in the gut
, i i i i i i i i i i i i i i i i i i i	cognitive high	stool and blood	microbiome and
	dementia risk	samples, health	physical and
		questionnaires,	mental capacity in
		physical	older individuals.
		measurements,	
		cognitive tests, and	The findings of the
		Optical Coherence	study may help in
		Tomography scans from	the development
		participants over a	of interventions
		four-year period.	targeting the gut
		Tour-year period.	
		The study will she	
		The study will also	prevent or delay
		analyze the	age-related
		composition of the gut	diseases.
		microbiome and its	
		association with	The study will
		cognitive function,	establish a data
		physical function, and	and sample
		other markers of	repository to
		successful aging.	facilitate future
			research into aging
		Additionally, the study	and the gut
		will investigate the	microbiome.
		mediating effects of	

the gut microbiome on the relationship between age, lifestyle, and health. The study will establish a data and sample repository to facilitate future research into aging and the gut microbiome.	The study will also collect colonic tissue biopsies and brain imaging data, which will contribute to a better understanding of the gut-brain axis and its role in aging.
Colonic tissue biopsies and brain imaging data will be collected from a subset of participants to further understand the gut-brain axis and its role in aging. Overall, the results of the paper will provide valuable insights into the role of the gut microbiome in aging, cognitive function, and overall health in older	The study will provide valuable information on the impact of environmental factors on the structure and function of gut microbes, which can inform strategies for maintaining gut health in older individuals.
individuals.	Overall, the practical implications of this paper include the potential for developing interventions to improve lifelong health and wellbeing, as well

In older women, a USA, high-protein diet Canada, including Taiwan animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine- N-oxide	To determine the association of the relative abundance of the microbial- generated trimethylamine (TMA)-generating taxon, Emergencia timonensis, with serum and urinary trimethylamine- N-oxide (TMAO)	Participants were randomized by Latin-square design to the following: high-protein diet (HPD), HPD + probiotic, HPD + prebiotic, and HPD + synbiotic	Double-blind, placebo controlled, crossover trial	26 participants	The high-protein diet (HPD) increased serum levels of L-carnitine, indoxyl sulfate, and phenylacetylglutamine , but not trimethylamine-N- oxide (TMAO) or p- cresyl sulfate. Urinary excretion of L- carnitine, indoxyl sulfate, phenylacetylglutamine , and trimethylamine (TMA) increased with the HPD, but not TMAO or p-cresyl sulfate. Most participants had undetectable levels of the TMA-generating taxon, Emergencia timonensis, at baseline and only 50 % during the HPD interventions, suggesting other taxa are responsible for the microbial generation of TMA in these individuals	as advancing our understanding of the gut microbiome's role in aging and age- related diseases. The study suggests that a high-protein diet, including animal-sourced foods, did not significantly impact serum levels and urinary excretion of trimethylamine-N- oxide (TMAO) in older women. This finding may be reassuring for individuals concerned about the potential cardiovascular and cognitive health risks associated with TMAO. The addition of prebiotic, or synbiotic supplementation did not mitigate the effects of the bigh-protein diat
					individuals.	high-protein diet on TMAO levels.

The 5-g supplement of prebiotic provided in the study increased total fiber and carbohydrate substrate provision to the microbiota, but a higher dose may be needed to elicit an effect in vivo.	This suggests that these interventions may not be effective in reducing TMAO production in the context of a high- protein diet. The study also found that the microbial taxon
sulfate and phenylacetylglutamine were seen in all HPD periods compared to baseline, but no differences were seen for p-cresyl sulfate.	Emergencia timonensis was not the primary contributor to TMA production in these individuals, indicating that
When comparing only the four HPD periods, no significant differences were seen for urinary p-cresyl sulfate, but increases were seen for indoxyl sulfate and phenylacetylglutamine	other microbial taxa may be responsible. Further research is needed to identify these taxa and understand their role in TMA production.
	The study highlights the importance of considering individual variation in TMAO levels and the need for further

							investigation into the health impacts of increased proteolytic activity and metabolite production resulting from higher protein intakes.
Oral flora in acute stroke patients: A prospective exploratory observational study	United Kingdom , Australia	To describe the bacterial profile of the oral flora during the first 2 weeks following a stroke, examining changes in the condition of the oral cavity and infections	Fifty participants had a complete set of swabs from four different oral sites and a saliva sample taken at three time points over a 14-day period. Molecular identification of bacteria was performed on the pooled DNA extracted.	prospective exploratory observational study	50 participants	A total of 103 bacterial phylotypes were identified, with 29 not found in the Human Oral Microbiome Database (HOMD). Streptococcus salivarius was the most common bacterial phylotype found in the oral cavity. The condition of the oral cavity worsened during the study period, and 30 % of patients had at least one infection. Gram-negative phylotypes were found in the oral cavity at different time points, with 60,8 % of participants harboring at least one gram- negative phylotype. Streptococcus	The study highlights the huge diversity of bacterial organisms in the oral cavity of stroke patients, with 103 bacterial phylotypes identified, including some not found in the Human Oral Microbiome Database (HOMD). The most common bacterial phylotype found was Streptococcus salivarius, and the presence of gram- negative phylotypes was also observed. The condition of the oral cavity worsened during

pneumoniae was the	the study period,
second most common	and 30 % of
phylotype found, but	patients had at
no association with	least one
pneumonia was found	infection.
in this study.	
	The findings
	suggest that there
	are no particular
	patterns linking
	the presence of
	specific bacterial
	phylotypes to
	infection or the
	condition of the
	oral cavity in
	stroke patients.
	•
	The study provides
	valuable data on
	the changes in oral
	flora after a
	stroke, which
	could support the
	development of
	larger
	observational or
	interventional
	studies to explore
	the impact of
	interventions on
	the oral flora and
	the associated risk
	of pneumonia.
	Future research in
	this area should

						consider amending protocols to better identify a greater variety of phylotypes and further investigate the role of Streptococcus pneumoniae in the development of pneumonia.
The Moo'D Study:	To advance our	Intervention group:	Triple-	45 participants	The study aims to	Overall, this study emphasizes the importance of oral care and hygiene in stroke patients to prevent infections and maintain good oral health. The findings of this
protocol for a randomised controlled trial of A2 betacasein only versus conventional dairy products in women with low mood	understanding of the possible impact of milk proteins on psychological distress in women as well as elucidate mechanisms underpinning any association	A2 beta-casein only dairy products Control group: conventional dairy products	blinded, randomised controlled trial	in the intervention group 45 participants in the control group	evaluatethecomparative effects ofconsumingdairyproducts containing A2beta-caseinversusconventionaldairyproducts on symptomsofpsychologicaldistress in women withlow mood.The primary outcomemeasure is symptoms ofpsychologicaldistress,which will be assessed	study will contribute to our understanding of the possible impact of milk proteins, specifically A2 beta-casein, on psychological distress in women with low mood. This has potential clinical implications for individuals who

using the 21-ite Depression, Anxie and Stress Scale. Secondary outcom	y symptoms of psychological distress.
include symptoms depression, anxiet and stress, severity low mood, cognitio gut microbio	of The study will also y, provide insights of into the biological h, effects of A1 and
symptomatology, markers of immur function, g inflammation, system metabolites, endothelial integri	women, expanding e our understanding ut of the differential c health effects of these dairy y products.
and oxidative stres body compositio perceived wellbein sleep, quality of lif resource use, and cos effectiveness.	n, The assessment of g, gut microbiota e, composition and
The World Heal Organization WellBein Index will be used assess perceive wellbeing, wi participants ratii statements on a Like scale.	g mechanisms o underlying the d relationship h between dairy g consumption and
scale. Adverse events will I monitored ar recorded througho the trial, and a	e The results may d have implications It for dietary

unfavourable or unintended medical occurrences will be reported as adverse events.	and interventions targeting mental health, particularly in relation to dairy product
Participants will be randomized to receive	consumption.
either A2 beta-casein only dairy products (intervention) or conventional dairy products containing both A1 and A2 beta- casein proteins (control). The intervention and control products will be prepared and packaged by the a2 Milk	The study's findings may also have broader public health implications, considering that dairy products are a significant component of traditional and Western diets.
Company.	Overall, this research has the potential to inform clinical practice, dietary guidelines, and public health strategies related to the consumption of dairy products and their impact on psychological well- being in women.

In addition, significant improvements in cognitive function and sleep quality were observed in older adults with mild cognitive impairment after probiotic supplementation. These results suggest that gut microbiota may influence cognitive function and sleep in this population, which is consistent with previous research that has explored the role of probiotics in brain health.^(45,46,47,48,49,50,51,52,53,54,55,56,57)

In relation to the study of the high-protein diet and its impact on the gut microbiota, changes in the levels of various metabolites and the composition of the microbiota were observed. These changes could be related to inflammation and other biological processes associated with mental health. However, it was emphasized that more research is needed to fully understand the effects of the high-protein diet on microbiota and mental health.^(58,59,60,61,62,63,64,65,66,67,68,69)

CONCLUSIONS

Overall the findings of this review suggest that there is a significant interaction between gut microbiota and mental health, supporting the idea that the gut and brain are connected bidirectionally through the gut-brain axis. However, it is important to note that many of these studies have limitations, such as small sample sizes and varied research designs, making it difficult to draw definitive conclusions. Therefore, more research is needed to fully understand the underlying mechanisms and clinical relevance of these relationships.

This systematic review provides a comprehensive overview of the interaction between gut microbiota and mental health in diverse populations. The findings suggest that gut microbiota may play an important role in mental health, but further studies are required to confirm and better understand these relationships. These results have significant implications for research and the development of interventions targeting the gut microbiota as a potential approach to improve mental health in various conditions.

REFERENCES

1. Aguilera NR, Jara RG, Machuca-Contreras F. Diagnóstico de la implementación de la gestión del cuidado de enfermería para atención cerrada en Chile. Salud, Ciencia y Tecnología 2023;3:348-348. https://doi.org/10.56294/saludcyt2023348.

2. Álvarez J, Fernández Real JM, Guarner F, Gueimonde M, Rodríguez JM, Saenz de Pipaon M, et al. Microbiota intestinal y salud. Gastroenterología y Hepatología 2021;44:519-35. https://doi.org/10.1016/j.gastrohep.2021.01.009.

3. Amaya AJC, Rojas MG. The art of seduce through a distinctive brand and women's lingerie. Community and Interculturality in Dialogue 2023;3:63-63. https://doi.org/10.56294/cid202363.

4. Bory E de JP, Naranjo OV, Herrero LB, Flores LGA, Fuentes MGB. Pertinence of the teaching use of virtual classroom by Basic Biomedical Science Department. Seminars in Medical Writing and Education 2023;2:31-31. https://doi.org/10.56294/mw202331.

5. Botchway BO, Okoye FC, Chen Y, Arthur WE, Fang M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis 2022;13:87-102. https://doi.org/10.14336/AD.2021.0616.

6. Cánovas LPL, Cánovas LBL, Rodríguez YP, Hernández BG, Martín MMP, Montano AL. Evaluation of Burnout Syndrome and associated factors in primary care health personnel. Community and Interculturality in Dialogue 2023;3:73-73. https://doi.org/10.56294/cid202373.

7. Cantaro JCC, Tello JDLCH, Ruiz GEZ, Claudio BAM. Leadership styles and organizational climate among employees in Lima, Peru. Health Leadership and Quality of Life 2023;2:36-36. https://doi.org/10.56294/hl202336.

8. Castañeda Guillot C. Microbiota intestinal y salud infantil. Revista Cubana de Pediatría 2018;90:94-110.

9. Castellanos S, Figueroa C. Cognitive accessibility in health care institutions. Pilot study and instrument proposal. Data and Metadata 2023;2:22-22. https://doi.org/10.56294/dm202322.

10. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012;10:735-42. https://doi.org/10.1038/nrmicro2876.

11. Cruz LMSDL, Fernández CA de. Factores asociados a la violencia contra los estudiantes de enfermería del internado rotativo. Salud, Ciencia y Tecnología 2023;3:464-464. https://doi.org/10.56294/saludcyt2023464.

12. Díaz-Chieng LY, Auza-Santiváñez JC, Castillo JIR. The future of health in the metaverse. Metaverse Basic and Applied Research 2022;1:1-1. https://doi.org/10.56294/mr20221.

13. Diseiye O, Ukubeyinje SE, Oladokun BD, Kakwagh VV. Emerging Technologies: Leveraging Digital Literacy for Self-Sufficiency Among Library Professionals. Metaverse Basic and Applied Research 2024;3:59-59. https://doi.org/10.56294/mr202459.

14. Doroszkiewicz J, Groblewska M, Mroczko B. The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System. Int J Mol Sci 2021;22:10028. https://doi.org/10.3390/ijms221810028.

15. Ettaloui N, Arezki S, Gadi T. An Overview of Blockchain-Based Electronic Health Records and Compliance with GDPR and HIPAA. Data and Metadata 2023;2:166-166. https://doi.org/10.56294/dm2023166.

16. Frazier TH, DiBaise JK, McClain CJ. Gut Microbiota, Intestinal Permeability, Obesity-Induced Inflammation, and Liver Injury. Journal of Parenteral and Enteral Nutrition 2011;35:14S-20S. https://doi.org/10.1177/0148607111413772.

17. Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021;203:5281-308. https://doi.org/10.1007/s00203-021-02516-y.

18. Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR. El eje microbiota-intestinocerebro y sus grandes proyecciones. Revista de Neurología 2019;68:111-7.

19. González RE. Gobernanza de enfermería en redes integradas de servicios de salud y su impacto en procesos de atención en el ámbito de equipos del primer nivel de atención. Salud, Ciencia y Tecnología 2021;1:37-37. https://doi.org/10.56294/saludcyt202137.

20. Gonzalez-Argote D, Gonzalez-Argote J, Machuca-Contreras F. Blockchain in the health sector: a systematic literature review of success cases. Gamification and Augmented Reality 2023;1:6-6. https://doi.org/10.56294/gr20236.

21. Gonzalez-Argote J. A Bibliometric Analysis of the Studies in Modeling and Simulation: Insights from Scopus. Gamification and Augmented Reality 2023;1:5-5. https://doi.org/10.56294/gr20235.

22. Gracia Galmés S de. Microbiota intestinal. Papel en la salud digestiva y en las enfermedades neurológicas 2019.

23. Grolli RE, Mingoti MED, Bertollo AG, Luzardo AR, Quevedo J, Réus GZ, et al. Impact of COVID-19 in the Mental Health in Elderly: Psychological and Biological Updates. Mol Neurobiol 2021;58:1905-16. https://doi.org/10.1007/s12035-020-02249-x.

24. Han M, Yuan S, Zhang J. The interplay between sleep and gut microbiota. Brain Research Bulletin 2022;180:131-46. https://doi.org/10.1016/j.brainresbull.2021.12.016.

25. Horta GAH, García ZG. Resultados del tratamiento de rehabilitación física en niños con retardo en el desarrollo psicomotor. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2023;3:28-28. https://doi.org/10.56294/ri202328.

26. Horta GAH, Miranda GLH, García ZG. Calidad de vida de pacientes con enfermedad de Parkinson que reciben tratamiento rehabilitador. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2023;3:27-27. https://doi.org/10.56294/ri202327.

27. Lascano IA, Acurio EV, López JH, Garcia DM, Jiménez EA, Sevilla VC. Asociación del nivel de estrés con el desarrollo del síndrome metabólico en el personal de salud. Salud, Ciencia y Tecnología 2023;3:386-386. https://doi.org/10.56294/saludcyt2023386.

28. Lepez CO. Invisible challenges in healthcare leadership. Health Leadership and Quality of Life 2023;2:35-35. https://doi.org/10.56294/hl202335.

29. Li S, Song J, Ke P, Kong L, Lei B, Zhou J, et al. The gut microbiome is associated with brain structure and function in schizophrenia. Sci Rep 2021;11:9743. https://doi.org/10.1038/s41598-021-89166-8.

30. Lichtensztejn M, Benavides M, Galdona C, Canova-Barrios CJ. Knowledge of students of the Faculty of Health Sciences about Music Therapy. Seminars in Medical Writing and Education 2023;2:35-35. https://doi.org/10.56294/mw202335.

31. Lobato KJT, Pita DLR, Ruiz GEZ, Claudio BAM. The impact of job performance and performance on workers in northern Lima. Health Leadership and Quality of Life 2023;2:30-30. https://doi.org/10.56294/hl202330.

32. Maldonado Weng J, Parikh I, Naqib A, York J, Green SJ, Estus S, et al. Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice. Mol Neurodegeneration 2019;14:47. https://doi.org/10.1186/s13024-019-0352-2.

33. Matos-Rodríguez A, Sargenton-Savon S, Mosqueda-Lobaina Y, Chibas-Muñoz EE. Características del Síndrome Demencial en la Atención Primaria de Salud. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2023;3:45-45. https://doi.org/10.56294/ri202345.

34. McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O'Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 2022;27:1920-35. https://doi.org/10.1038/s41380-022-01456-3.

35. Morgner MI, Djament L. Impact of Preventive and Mandatory Social Isolation in the control of type I diabetes in adults in the Buenos Aires Metropolitan Area. Community and Interculturality in Dialogue 2023;3:82-82. https://doi.org/10.56294/cid202382.

36. Morres ID, Hatzigeorgiadis A, Stathi A, Comoutos N, Arpin-Cribbie C, Krommidas C, et al. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depression and Anxiety 2019;36:39-53. https://doi.org/10.1002/da.22842.

37. Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells 2021;10:2084. https://doi.org/10.3390/cells10082084.

38. Nagpal J, Cryan JF. Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021;109:3930-53. https://doi.org/10.1016/j.neuron.2021.09.036.

39. Oloriz MAG, Beltrán CR, Sánchez CMC. Trends in health telematics and telemedicine services. Data and Metadata 2022;1:16-16. https://doi.org/10.56294/dm202216.

40. Orsetti M, Bertolini Y, Villaalta AF, Creo F, Santillan P, Inzaurralde N. Food safety and the approach of the Human Milk Collection Center at the Hospital Zonal General de Agudos "Prof. Dr. Ramón Carrillo". Community and Interculturality in Dialogue 2023;3:104-104. https://doi.org/10.56294/cid2023104.

41. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología 2021;74:790-9. https://doi.org/10.1016/j.recesp.2021.06.016.

42. Paixão LA, Castro FF dos S. Colonização da microbiota intestinal e sua influência na saúde do hospedeiro - doi: 10.5102/ucs.v14i1.3629. Universitas: Ciências da Saúde 2016;14:85-96. https://doi.org/10.5102/ucs.v14i1.3629.

43. Parikh IJ, Estus JL, Zajac DJ, Malik M, Maldonado Weng J, Tai LM, et al. Murine Gut Microbiome Association With APOE Alleles. Frontiers in Immunology 2020;11.

44. Pössel G, González-Hernández J. Manejo farmacológico de la agitación en demencia: Revisión. Revista Memoriza com 2010;6:40-9.

45. Prieto YN, Sánchez GAR, García AP. The discipline of Medical Psychology in the ethicalhumanistic education of medical students. Seminars in Medical Writing and Education 2023;2:42-42. https://doi.org/10.56294/mw202342. 46. Quintana-Honores M, Corvalán P, Gironda-Gurán J. Family integration and skin-to-skin contact with the newborn favors the recovery of the hospitalized patient: experiences of its implementation in an Obstetric Critical Care Unit. Health Leadership and Quality of Life 2023;2:33-33. https://doi.org/10.56294/hl202333.

47. Ramírez ME, Ron M, Mago G, Hernandez-Runque E, Martínez MDC, Escalona E. Proposal for an epidemiological surveillance program for the prevention of occupational accidents and diseases in workers exposed to carbon dioxide (CO2) at a Venezuelan brewing company. Data and Metadata 2023;2:55-55. https://doi.org/10.56294/dm202355.

48. Rodríguez-Martínez C, Alvarez-Solano J, Pérez-Galavís AD, Ron M. Distance education during the COVID-19 pandemic: experience at a public university. Seminars in Medical Writing and Education 2023;2:32-32. https://doi.org/10.56294/mw202332.

49. Romero-Carazas R. Prompt lawyer: a challenge in the face of the integration of artificial intelligence and law. Gamification and Augmented Reality 2023;1:7-7. https://doi.org/10.56294/gr20237.

50. Ron M, Pérez A, Hernández-Runque E. Nivel de riesgo para la salud y predicción del dolor musculo-esqueletico en trabajadores en condiciones de teletrabajo: Un enfoque matricial. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2023;3:40-40. https://doi.org/10.56294/ri202340.

51. Sánchez CMC, León LAG, Yanes RCA, Oloriz MAG. Metaverse: the future of medicine in a virtual world. Metaverse Basic and Applied Research 2022;1:4-4. https://doi.org/10.56294/mr20224.

52. Sánchez-Ortega B, Pérez-Galavís A, Ron M. Condition, Working Environment and Health Effects on the Medical Personnel. Community and Interculturality in Dialogue 2023;3:105-105. https://doi.org/10.56294/cid2023105.

53. Santos CA, Ortigoza A, Barrios CJC. Nursing students' perceptions of Clinical Clerkship. Seminars in Medical Writing and Education 2023;2:30-30. https://doi.org/10.56294/mw202330.

54. Schneider JA. Neuropathology of Dementia Disorders. Continuum (Minneap Minn) 2022;28:834-51. https://doi.org/10.1212/CON.00000000001137.

55. Smith PJ, Merwin RM. The Role of Exercise in Management of Mental Health Disorders: An Integrative Review. Annual Review of Medicine 2021;72:45-62. https://doi.org/10.1146/annurev-med-060619-022943.

56. Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises. Biological Psychiatry 2020;88:818-28. https://doi.org/10.1016/j.biopsych.2020.02.016.

57. Tacuri ABG, Pérez GPL. Hospitalización prevenible en enfermedades crónico degenerativas: hipertensión arterial y diabetes. Salud, Ciencia y Tecnología 2023;3:487-487. https://doi.org/10.56294/saludcyt2023487.

58. Tengeler AC, Dam SA, Wiesmann M, Naaijen J, van Bodegom M, Belzer C, et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 2020;8:44. https://doi.org/10.1186/s40168-020-00816-x.

59. Torres A, Pérez-Galavís A, Ron M, Mendoza N. Factores Psicosociales Laborales y Estrés en el Personal Médico Asistencial. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2023;3:42-42. https://doi.org/10.56294/ri202342.

60. Trujillo Orrego N, Pineda DA, Bocanegra Y. Demencia y deterioro cognitivo leve en la enfermedad de Parkinson: una revisión. Revista de neurología 2014;59:555-69.

61. Tumiri T, Duran L, Lin J, Ríos NB, Mosca A, Gómez T. La Imagen de enfermería y simulación. Metaverse Basic and Applied Research 2023;2:36-36. https://doi.org/10.56294/mr202336.

62. Ungar M, Theron L. Resilience and mental health: how multisystemic processes contribute to positive outcomes. The Lancet Psychiatry 2020;7:441-8. https://doi.org/10.1016/S2215-0366(19)30434-1.

63. Velasco ASD, Ccama FLM, Claudio BAM, Ruiz GEZ. Transformational Leadership as a Driver of Business Success: A Case Study in Caquetá. Health Leadership and Quality of Life 2023;2:37-37. https://doi.org/10.56294/hl202337.

64. Villalobos C, Cavallera C, Espinoza M, Cid MF, Paredes I. Toward Efficiency and Accuracy: Implementation of a Semiautomated Data Capture and Processing Model for the Construction of a Hospital-based Tumor Registry in Chile. Data and Metadata 2023;2:124-124. https://doi.org/10.56294/dm2023124.

65. Wang S-Z, Yu Y-J, Adeli K. Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms 2020;8:527. https://doi.org/10.3390/microorganisms8040527.

66. Wang Z, Chen W-H, Li S-X, He Z-M, Zhu W-L, Ji Y-B, et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol Psychiatry 2021;26:6277-92. https://doi.org/10.1038/s41380-021-01113-1.

67. Yao L, Fang H, Leng W, Li J, Chang J. Effect of Aerobic Exercise on Mental Health in Older Adults: A Meta-Analysis of Randomized Controlled Trials. Frontiers in Psychiatry 2021;12.

68. Zajac DJ, Green SJ, Johnson LA, Estus S. APOE genetics influence murine gut microbiome. Sci Rep 2022;12:1906. https://doi.org/10.1038/s41598-022-05763-1.

69. Zhang W. Blockchain-based solutions for clinical trial data management: a systematic review. Metaverse Basic and Applied Research 2022;1:17-17. https://doi.org/10.56294/mr202217.

FINANCING

We did not receive financing for the development of this research.

CONFLICT OF INTEREST

We declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION:

Conceptualization: Antonio Matheus Teixeira Leite, Javier González-Argote. Data curation: Antonio Matheus Teixeira Leite, Javier González-Argote. Drafting - original draft: Antonio Matheus Teixeira Leite, Javier González-Argote. Writing - proofreading and editing: Antonio Matheus Teixeira Leite, Javier González-Argote.