Application of Activated Carbon from Cabuya Negra (Agave americana L.) for Diuron Adsorption in Aqueous Solutions: A Sustainable Alternative for Wastewater Treatment
DOI:
https://doi.org/10.56294/sctconf20251475Keywords:
fiber, carbon, chemical activation, adsorption, diuronAbstract
The Cabuya Negra (Agave americana L.) is widely distributed in South America and is considered a perennial plant due to its adaptability to dry and arid climates. It grows and develops extensively, mainly being used to delineate land boundaries. This study aimed to repurpose this biomass through the production of activated carbon as an adsorbent material for the removal of Diuron from aqueous solutions. The activated carbon was found to contain functional groups such as methyl, carbonyl, and hydroxyl, and the presence of phosphorus bonds was also observed, confirming the effectiveness of the chemical activation process using phosphoric acid. EDS analysis revealed that the activated carbon was primarily composed of carbon (85.68%), with a low ash content (11.8%), indicating that a significant portion of the organic material was consumed during the pyrolysis process. Two Diuron solutions (100 mL and 50 mL) were prepared, to which 0.25 g and 0.5 g of activated carbon were added. The adsorbent demonstrated high efficiency in Diuron removal, with the best treatment achieving 63.39% removal using 0.25 g of activated carbon with 100 mL of Diuron solution. These findings demonstrate that the activated carbon obtained is a viable alternative for the removal of this herbicide from aqueous solutions.
References
1. UN World Water Development Report [Internet]. [citado 16 de enero de 2025]. United Nations World Water Development Reports. Disponible en: https://www.unesco.org/reports/wwdr/en/reports
2. Xu X, Yang H. nternational Journal of Environmental Research and Public Health. 16-03-20222 [citado 16 de enero de 2025]. Theoretical Model and Actual Characteristics of Air Pollution Affecting Health Cost: A Review. Disponible en: https://www.mdpi.com/1660-4601/19/6/3532 DOI: https://doi.org/10.3390/ijerph19063532
3. Conroy RM, Elmore-Meegan M, Joyce T, McGuigan KG, Barnes J. Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial. The Lancet. diciembre de 1996;348(9043):1695-7. DOI: https://doi.org/10.1016/S0140-6736(96)02309-4
4. Olmstead S, Zheng J. Review of Environmental Economics and Policy. [citado 16 de enero de 2025]. Water Pollution Control in Developing Countries: Policy Instruments and Empirical Evidence. Disponible en: https://www.journals.uchicago.edu/doi/abs/10.1086/715645?journalCode=reep
5. Boretti A, Lorenzo R. nature water. 2019 [citado 16 de enero de 2025]. Reassessing the projections of the World Water Development Report | npj Clean Water. Disponible en: https://www.nature.com/articles/s41545-019-0039-9 DOI: https://doi.org/10.1038/s41545-019-0039-9
6. Kamani H, Zehi MH. Sonocatalyst degradation of catechol from aqueous solution using magnesium oxide nanoparticles. Global NEST Journal. 18 de febrero de 2023;89-94. DOI: https://doi.org/10.30955/gnj.004550
7. Yuan J, Li Y, Shan Y, Tong H, Zhao J. Effect of Magnesium Ions on the Mechanical Properties of Soil Reinforced by Microbially Induced Carbonate Precipitation. Journal of Materials in Civil Engineering. noviembre de 2023;35(11):04023413. DOI: https://doi.org/10.1061/JMCEE7.MTENG-15080
8. Abdipour H, Hemati H. International Journal of Environmental Analytical Chemistry. [citado 16 de enero de 2025]. Sonocatalytic process of penicillin removal using - Fe2O3 / effect of different parameters / degradation mechanism/ kinetic study/optimisation with response surface model. Disponible en: https://www.researchgate.net/publication/370796923_Sonocatalytic_process_of_penicillin_removal_using_-_Fe2O3_effect_of_different_parameters_degradation_mechanism_kinetic_studyoptimisation_with_response_surface_model
9. Younas U, Ameen M, Perviaz M, Shahzadi G, Fatima A, Ali F, et al. Sodium alginate-supported AgSr nanoparticles for catalytic degradation of malachite green and methyl orange in aqueous medium. Nanotechnology Reviews [Internet]. 1 de enero de 2024 [citado 16 de enero de 2025];13(1). Disponible en: https://www.degruyter.com/document/doi/10.1515/ntrev-2023-0203/html?srsltid=AfmBOoryu_Uhb_azCiq5lQkx4GB3zOCaZJfhYCYDqQE8Q0P4VT83K7gD
10. Syafrudin M, Kristanti RA, Yuniarto A. The National Center for Biotechnology Information. [citado 16 de enero de 2025]. Pesticides in Drinking Water—A Review. Disponible en: https://www.mdpi.com/1660-4601/18/2/468 DOI: https://doi.org/10.3390/ijerph18020468
11. Liu W, Huang F, Zhang J. PubMed. [citado 16 de enero de 2025]. Treatment of Cr(VI)-containing Mg(OH)2 nanowaste. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18567040/
12. Sharma A, Kumar V, Shahzad B. | Semantic Scholar. [citado 16 de enero de 2025]. Worldwide pesticide usage and its impacts on ecosystem. Disponible en: https://www.semanticscholar.org/paper/Worldwide-pesticide-usage-and-its-impacts-on-Sharma-Kumar/4bada922c95ea285dfb532926f2d39eee489b947
13. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, et al. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ. 1 de abril de 2015;511:123-37. DOI: https://doi.org/10.1016/j.scitotenv.2014.12.041
14. Hughes RG, Potouroglou M, Ziauddin Z, Nicholls JC. Seagrass wasting disease: Nitrate enrichment and exposure to a herbicide (Diuron) increases susceptibility of Zostera marina to infection. Mar Pollut Bull. septiembre de 2018;134:94-8. DOI: https://doi.org/10.1016/j.marpolbul.2017.08.032
15. Lee SJ, Shim JB, Lee SR. First report of Labyrinthula zosterae (Labyrinthulomycetes) as the causal pathogen of wasting disease in the seagrass Zostera marina in Korea. Plant Dis. 25 de febrero de 2021; DOI: https://doi.org/10.1094/PDIS-12-20-2751-PDN
16. Li J, Zhang W, Lin Z. National Library of Medice. [citado 16 de enero de 2025]. Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron - PubMed. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34475856/
17. Maqueda C, dos Santos Afonso M, Morillo E, Torres Sánchez RM, Perez-Sayago M, Undabeytia T. Adsorption of diuron on mechanically and thermally treated montmorillonite and sepiolite. Applied Clay Science. 1 de febrero de 2013;72:175-83. DOI: https://doi.org/10.1016/j.clay.2012.10.017
18. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S, et al. Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chemical Engineering Journal. 15 de junio de 2012;193-194:339-47. DOI: https://doi.org/10.1016/j.cej.2012.04.051
19. Mohammed AM, Huovinen M, Vähäkangas KH. Toxicity of diuron metabolites in human cells. Environmental Toxicology and Pharmacology. 1 de agosto de 2020;78:103409. DOI: https://doi.org/10.1016/j.etap.2020.103409
20. Sheng Lau K, Zahira N, Xian S. Polymers. [citado 16 de enero de 2025]. Chitosan-Bead-Encapsulated Polystyrene Sulfonate for Adsorption of Methylene Blue and Regeneration Studies: Batch and Continuous Approaches. Disponible en: https://www.mdpi.com/2073-4360/15/5/1269 DOI: https://doi.org/10.3390/polym15051269
21. Hu J, Zhao L, Luo J. ScienceDirect. [citado 16 de enero de 2025]. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives - ScienceDirect. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0304389422012304
22. Dotto GL, McKay G. Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering. 1 de agosto de 2020;8(4):103988. DOI: https://doi.org/10.1016/j.jece.2020.103988
23. Mohd Noor HM, Lim A, Li C. Scincedirect. [citado 16 de enero de 2025]. Adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm trunk-derived activated carbon: Isotherm and kinetic studies at acidic, ambient condition. Disponible en: https://www.researchgate.net/publication/355510287_Adsorption_of_24-dichlorophenoxyacetic_acid_onto_oil_palm_trunk-derived_activated_carbon_Isotherm_and_kinetic_studies_at_acidic_ambient_condition
24. Cansado IPP, Mourão PAM. ScienceDirect. [citado 16 de enero de 2025]. Adsorption of MCPA, 2,4-D and diuron onto activated carbons from wood composites. Disponible en: https://www.researchgate.net/publication/318346020_Adsorption_of_MCPA_24-D_and_diuron_onto_activated_carbons_from_wood_composites
25. Franco D, Silva Oliveira LF, da Boit Martinello K, Diel JC, Georgin J, Schadeck Netto M, et al. Transforming agricultural waste into adsorbent: application of Fagopyrum esculentum wheat husks treated with H2SO4 to adsorption of the 2,4-D herbicide. 2021 [citado 16 de enero de 2025]; Disponible en: https://hdl.handle.net/11323/9001 DOI: https://doi.org/10.1016/j.jece.2021.106872
26. Sánchez-Moreno H, García-Rodríguez L, Recalde-Moreno C. Natural cellulose fibers (Agave Americana L. ASPARAGACEAE) impregnated with magnetite nanoparticles as a novel adsorbent of mercury (Hg) in aqueous solutions. Adsorption. 7 de diciembre de 2024;31(1):16. DOI: https://doi.org/10.1007/s10450-024-00577-1
27. Rathnayaka RMH, Priyantha N, Gunathilake WSS. Removal of trivalent and hexavalent chromium from aqueous solution using fiber of Agave americana plant and its modified forms. Colloids and Surfaces C: Environmental Aspects. 1 de noviembre de 2024;2:100029. DOI: https://doi.org/10.1016/j.colsuc.2024.100029
28. Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere. 1 de febrero de 2021;264:128455. DOI: https://doi.org/10.1016/j.chemosphere.2020.128455
29. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions | Request PDF [Internet]. [citado 16 de enero de 2025]. Disponible en: https://www.researchgate.net/publication/222191155_Variation_in_the_FTIR_spectra_of_a_biomass_under_impregnation_carbonization_and_oxidation_conditions
30. Bouchelkia N, Tahraoui H, Amrane A, Belkacemi H, Bollinger JC, Bouzaza A, et al. Jujube stones based highly efficient activated carbon for methylene blue adsorption: Kinetics and isotherms modeling, thermodynamics and mechanism study, optimization via response surface methodology and machine learning approaches. Process Safety and Environmental Protection. 1 de febrero de 2023;170:513-35. DOI: https://doi.org/10.1016/j.psep.2022.12.028
31. Hernandes PT, Franco DSP. Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium. ResearchGate [Internet]. 22 de octubre de 2024 [citado 20 de enero de 2025];10(3). Disponible en: https://www.researchgate.net/publication/358659740_Investigation_of_biochar_from_Cedrella_fissilis_applied_to_the_adsorption_of_atrazine_herbicide_from_an_aqueous_medium DOI: https://doi.org/10.1016/j.jece.2022.107408
32. Jordana G, Dison F. Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen | Request PDF. ResearchGate [Internet]. 22 de octubre de 2024 [citado 20 de enero de 2025]; Disponible en: https://www.researchgate.net/publication/351597471_Development_of_highly_porous_activated_carbon_from_Jacaranda_mimosifolia_seed_pods_for_remarkable_removal_of_aqueous-phase_ketoprofen
33. Franco DSP, Georgin J, Schadeck Netto M. ScienceDirect. [citado 20 de enero de 2025]. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species | Request PDF. Disponible en: https://www.researchgate.net/publication/352775517_Highly_effective_adsorption_of_synthetic_phenol_effluent_by_a_novel_activated_carbon_prepared_from_fruit_wastes_of_the_Ceiba_speciosa_forest_species
34. Bueno de Oliveira AV, Rizzato TM, Bolanho Barros BC. Physicochemical modifications of sugarcane and cassava agro-industrial wastes for applications as biosorbents. ResearchGate [Internet]. 9 de diciembre de 2024 [citado 20 de enero de 2025];7. Disponible en: https://www.researchgate.net/publication/334673620_Physicochemical_modifications_of_sugarcane_and_cassava_agro-industrial_wastes_for_applications_as_biosorbents DOI: https://doi.org/10.1016/j.biteb.2019.100294
35. Boonamnuayvitaya V, Sae-ung S, Tanthapanichakoon W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation and Purification Technology. 15 de marzo de 2005;42(2):159-68. DOI: https://doi.org/10.1016/j.seppur.2004.07.007
36. Niazi L, Lashanizadegan A, Sharififard H. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. Journal of Cleaner Production. 1 de junio de 2018;185:554-61. DOI: https://doi.org/10.1016/j.jclepro.2018.03.026
37. Kanti Sen T, Afroze S. Springer Nature Link. [citado 20 de enero de 2025]. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata | Water, Air, & Soil Pollution. Disponible en: https://link.springer.com/article/10.1007/s11270-010-0663-y
38. Georgin J, Pinto D, Franco DSP, Schadeck Netto M, Lazarotto JS, Allasia DG, et al. Improved Adsorption of the Toxic Herbicide Diuron Using Activated Carbon Obtained from Residual Cassava Biomass (Manihot esculenta). Molecules. enero de 2022;27(21):7574. DOI: https://doi.org/10.3390/molecules27217574
39. Georgin J, Franco DSP, Netto MS, Piccilli DGA, Foletto EL, Dotto GL. Adsorption investigation of 2,4-D herbicide on acid-treated peanut (Arachis hypogaea) skins. Environ Sci Pollut Res Int. julio de 2021;28(27):36453-63. DOI: https://doi.org/10.1007/s11356-021-12813-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Linda M Flores Fiallos, Sofia Carolina Godoy Ponce, Daniel Alejandro Heredia Jara, Nora Tahirí Mejía Cabezas (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.