Effect of kombucha green tea (Camellia sinensis) on mRNA SREBP-1c expression of dyslipidemic model rats

Authors

DOI:

https://doi.org/10.56294/sctconf20251520

Keywords:

Kombucha green tea, SREBP-1c, Dyslipidemia, Polyphenols, Lipids

Abstract

Introduction: Dyslipidemia is a condition marked by irregularities in the levels of lipids in the blood. The long-term use of synthetic hypolipidemic drugs can lead to numerous side effects, necessitating the search for alternative herbal remedies. Potential benefits of kombucha green tea (KGT), a traditional fermented drink with symbiotic SCOBY culture, known for its hypocholesterolemic, hepatoprotective, and antioxidant effects. These properties contribute to the management of advanced dyslipidemia by enhancing the activation of AMPK, which represses transcription of SREBP-1c involved in coding genes related to de novo lipogenesis in the liver. This study aims to investigate the potential benefits of KGT in Rattus norvegicus dyslipidemia.
Methods: The experiment was conducted on five groups of male Rattus norvegicus, including a dyslipidemia control group (DLP), a healthy control group (NC), and the DLP group with KGT intervention at doses of 70, 85, and 100 mg/kg BW. SREBP-1c mRNA expression was analyzed using Real Time-qPCR.
Results: Significant decrease in TC, LDL, and TG levels and an increase in HDL between the DLP group and the KGT intervention group (p<0.05). Moreover, SREBP-1c mRNA expression also decreased in all KGT treatment groups compared with the DLP group (p<0.05).
Conclusions: Supplementation KGT in this study was shown to reduce the level of mRNA expression of SREBP-1c in the liver and improve serum lipid profile of dyslipidemic rats.

 

References

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020 Dec;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010 DOI: https://doi.org/10.1016/j.jacc.2020.11.021

2. PERKENI. [Management of Dyslipidemia in Indonesia 2021]. Indonesian Association of Clinical Endocrinology. 2021;1–2.

3. Hedayatnia M, Asadi Z, Zare-Feyzabadi R, Yaghooti-Khorasani M, Ghazizadeh H, Ghaffarian-Zirak R, et al. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis. 2020 Mar;19(1):42. https://doi.org/10.1186/s12944-020-01204-y DOI: https://doi.org/10.1186/s12944-020-01204-y

4. Yan D, Lehto M, Rasilainen L, Metso J, Ehnholm C, Ylä-Herttuala S, et al. Oxysterol binding protein induces upregulation of SREBP-1c and enhances hepatic lipogenesis. Arterioscler Thromb Vasc Biol. 2007 May;27(5):1108–14. https://doi.org/10.1161/ATVBAHA.106.138545 DOI: https://doi.org/10.1161/ATVBAHA.106.138545

5. Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci. 2024 Jan;25(2). https://doi.org/10.3390/ijms25021109 DOI: https://doi.org/10.3390/ijms25021109

6. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017 Dec;13(12):710–30. https://doi.org/10.1038/nrendo.2017.91 DOI: https://doi.org/10.1038/nrendo.2017.91

7. Moslehi A, Hamidi-Zad Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin Transl Hepatol. 2018 Sep;6(3):332–8. https://doi.org/10.14218/JCTH.2017.00061 DOI: https://doi.org/10.14218/JCTH.2017.00061

8. Adeyemi DO, Komolafe OA, Adewole OS, Obuotor EM, Adenowo TK. Anti hyperglycemic activities of Annona muricata (Linn). African J Tradit Complement Altern Med AJTCAM. 2008 Oct;6(1):62–9.

9. Khaerah A, Akbar F. Antioxidant Activity of Kombucha Tea from Several Different Tea Varieties. Oxford English Dict. 2019;472–6

10. Kitwetcharoen H, Phung LT, Klanrit P, Thanonkeo S, Tippayawat P, Yamada M, et al. Kombucha Healthy Drink—Recent Advances in Production, Chemical Composition and Health Benefits. Vol. 9, Fermentation. 2023. https://doi.org/10.3390/fermentation9010048 DOI: https://doi.org/10.3390/fermentation9010048

11. Jakubczyk K, Kałduńska J, Kochman J, Janda K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants (Basel, Switzerland). 2020 May;9(5). https://doi.org/10.3390/antiox9050447 DOI: https://doi.org/10.3390/antiox9050447

12. Widianingsih W, Salamah N, Maulida FQ. The effects of ethanolic extract of green algae (ulva lactuca l.) on blood cholesterol levels in male rats induced by a high fat diet. Jurnal Kedokteran dan Kesehatan Indonesia. 2009;7(5):181–6 DOI: https://doi.org/10.20885/JKKI.Vol7.Iss5.art3

13. Institutional Animal Care and Use Program. Oral Gavage In Mice and Rats IACUC Standard Procedure Effective. Date : May 2023. 2023;i(May).

14. Blainski A, Lopes GC, de Mello JCP. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules. 2013 Jun;18(6):6852–65. https://doi.org/10.3390/molecules18066852 DOI: https://doi.org/10.3390/molecules18066852

15. Michiu D, Socaciu M-I, Fogarasi M, Jimborean AM, Ranga F, Mureşan V, et al. Implementation of an Analytical Method for Spectrophotometric Evaluation of Total Phenolic Content in Essential Oils. Molecules. 2022 Feb;27(4). https://doi.org/10.3390/molecules27041345 DOI: https://doi.org/10.3390/molecules27041345

16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262 DOI: https://doi.org/10.1006/meth.2001.1262

17. Alaei Z, Doudi M, Setorki M. The protective role of Kombucha extract on the normal intestinal microflora, high-cholesterol diet caused hypercholesterolemia, and histological structures changes in New Zealand white rabbits. Avicenna J phytomedicine. 2020;10(6):604–14.

18. Bhattacharya S, Gachhui R, Sil PC. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem Toxicol an Int J Publ Br Ind Biol Res Assoc. 2013 Oct;60:328–40. https://doi.org/10.1016/j.fct.2013.07.051 DOI: https://doi.org/10.1016/j.fct.2013.07.051

19. Permatasari HK, Firani NK, Prijadi B, Irnandi DF, Riawan W, Yusuf M, et al. Kombucha drink enriched with sea grapes (Caulerpa racemosa) as potential functional beverage to contrast obesity: An in vivo and in vitro approach. Clin Nutr ESPEN. 2022;49:232–40. https://doi.org/10.1016/j.clnesp.2022.04.015 DOI: https://doi.org/10.1016/j.clnesp.2022.04.015

20. Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, et al. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem. 2024 Nov;459:140264. https://doi.org/10.1016/j.foodchem.2024.140264 DOI: https://doi.org/10.1016/j.foodchem.2024.140264

21. Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther. 2013 May;13(5):631–42. https://doi.org/10.1517/14712598.2013.758706 DOI: https://doi.org/10.1517/14712598.2013.758706

22. Gross JD, Pears CJ. Possible Involvement of the Nutrient and Energy Sensors mTORC1 and AMPK in Cell Fate Diversification in a Non-Metazoan Organism. Front cell Dev Biol. 2021;9:758317. https://doi.org/10.3389/fcell.2021.758317 DOI: https://doi.org/10.3389/fcell.2021.758317

23. Chen KG, Kang RR, Sun Q, Liu C, Ma Z, Liu K, et al. Resveratrol ameliorates disorders of mitochondrial biogenesis and mitophagy in rats continuously exposed to benzo(a)pyrene from embryonic development through adolescence. Toxicology. 2020 Sep;442:152532. https://doi.org/10.1016/j.tox.2020.152532 DOI: https://doi.org/10.1016/j.tox.2020.152532

24. Oriquat G, Masoud IM, Kamel MA, Aboudeya HM, Bakir MB, Shaker SA. The Anti-Obesity and Anti-Steatotic Effects of Chrysin in a Rat Model of Obesity Mediated through Modulating the Hepatic AMPK/mTOR/lipogenesis Pathways. Vol. 28, Molecules. 2023. https://doi.org/10.3390/molecules28041734 DOI: https://doi.org/10.3390/molecules28041734

25. Gong M, Yuan Y, Shi X, Huang H, Liu J, Zhao J, et al. Compound oolong tea ameliorates lipid accumulation through AMPK-PPAR pathway of hepatic lipid metabolism and modulates gut microbiota in HFD induced mice. Food Res Int. 2024 Nov;196:115041. https://doi.org/10.1016/j.foodres.2024.115041 DOI: https://doi.org/10.1016/j.foodres.2024.115041

26. Wang Y, Nakajima T, Gonzalez FJ, Tanaka N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int J Mol Sci. 2020 Mar;21(6). https://doi.org/10.3390/ijms21062061 DOI: https://doi.org/10.3390/ijms21062061

27. Seo D-B, Jeong HW, Kim Y-J, Kim S, Kim J, Lee JH, et al. Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure. Br J Nutr. 2017 Jan;117(2):177–86. https://doi.org/10.1017/S0007114516004621 DOI: https://doi.org/10.1017/S0007114516004621

28. Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul;25(13). https://doi.org/10.3390/molecules25133060 DOI: https://doi.org/10.3390/molecules25133060

29. Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, et al. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY). 2019 Sep;11(18):7510–24. https://doi.org/10.18632/aging.102263 DOI: https://doi.org/10.18632/aging.102263

30. Zhang Q, Fan X, Ye R, Hu Y, Zheng T, Shi R, et al. The Effect of Simvastatin on Gut Microbiota and Lipid Metabolism in Hyperlipidemic Rats Induced by a High-Fat Diet. Front Pharmacol. 2020;11:522. https://doi.org/10.3389/fphar.2020.00522 DOI: https://doi.org/10.3389/fphar.2020.00522

31. Matoušková P, Bártíková H, Boušová I, Hanušová V, Szotáková B, Skálová L. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS One. 2014;9(1):e86033. https://doi.org/10.1371/journal.pone.0086033 DOI: https://doi.org/10.1371/journal.pone.0086033

Downloads

Published

2025-02-15

How to Cite

1.
Linda, Lukitasari L, Kencono Wungu CD, Humairah I, Yuliawati TH, Sulistiawati, et al. Effect of kombucha green tea (Camellia sinensis) on mRNA SREBP-1c expression of dyslipidemic model rats. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2025 Feb. 15 [cited 2025 Apr. 24];4:1520. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1520