The Impact of Business Intelligence Factors on Risk Management: A Study of Technical and Human-Administrative Risks

Authors

DOI:

https://doi.org/10.56294/sctconf20251527

Keywords:

Business Intelligence (BI), Risk Management, Technical Risks, Human-Administrative Risks, Data Analytics, Organizational Resilience

Abstract

Introduction: As organizations face increasingly complex challenges, the ability to manage risks effectively has become a strategic imperative. This study investigates the influence of business intelligence (BI) factors—data quality, infrastructure, security, and human skills—on managing technical and human-administrative risks. 
Method: A conceptual model comprising four hypotheses is proposed to evaluate these relationships. Using survey data collected from BI professionals and risk management experts, the study applies advanced statistical techniques to assess the hypotheses. 
Results: The findings reveal that data quality, robust infrastructure, and effective security protocols are key determinants of mitigating technical risks, while human skills significantly impact the management of human-administrative risks.
Conclusion: These insights underline the necessity of aligning BI systems with organizational risk strategies, offering a practical framework for businesses aiming to improve their resilience in a competitive landscape.

References

1. Dahmani S, Boucher X, Gourc D, Peillon S, Marmier F. Integrated approach for risk management in servitization decision-making process. Bus Process Manag J. 2020;26(7):1949-77. DOI: https://doi.org/10.1108/BPMJ-07-2019-0279

2. Al-Momani MM, Al-Momani IM. Exploring the impact of big data on companies' business intelligence strategies in the digital era. Edelweiss Appl Sci Technol. 2024;8(5):883-91. DOI: https://doi.org/10.55214/25768484.v8i5.1791

3. Delen D, Zolbanin HM. The role of analytics in big data: Applications in BI systems and their implications for organizational resilience. Decis Support Syst. 2018;112:60-9. DOI: https://doi.org/10.1016/j.dss.2018.06.010

4. Grover V, Chiang RH, Liang TP, Zhang D. Creating strategic business value from big data analytics and business intelligence systems. J Manag Inf Syst. 2018;35(2):388-423. DOI: https://doi.org/10.1080/07421222.2018.1451951

5. Al-Momani MM, Abbas N, Saleem TA, Basha M, Jubran AH, Al-Sawaie K, et al. The role of business intelligence on digital economic transformations (case study: E-government in Jordan). In: Artificial Intelligence (AI) and Finance. Cham: Springer Nature Switzerland; 2023. p. 308-16. DOI: https://doi.org/10.1007/978-3-031-39158-3_29

6. Wong LW, Tan GWH, Ooi KB, Lin B, Dwivedi YK. Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis. Int J Prod Res. 2024;62(15):5535-55. DOI: https://doi.org/10.1080/00207543.2022.2063089

7. Jeong CY, Lee SYT, Lim JH. Information security breaches and IT security investments: Impacts on competitors. Inf Manag. 2019;56(5):681-95. DOI: https://doi.org/10.1016/j.im.2018.11.003

8. Dwivedi R. Intellectual structure of business analytics and data driven insights for information security breaches [dissertation]. Arlington (TX): The University of Texas at Arlington; 2018.

9. Vervaet A. Automated log-based anomaly detection within cloud computing infrastructures [doctoral dissertation]. Paris: Sorbonne Université; 2023.

10. Bader B, Schuster T, Dickmann M, editors. Danger and risk as challenges for HRM: Managing people in hostile environments. London: Routledge; 2020. DOI: https://doi.org/10.4324/9781003111122

11. Abubakar AM, Elrehail H, Alatailat MA, Elçi A. Knowledge management, decision-making style and organizational performance. J Innov Knowl. 2019;4(2):104-14. DOI: https://doi.org/10.1016/j.jik.2017.07.003

12. Erkkilä S. Managing voluntary employee turnover with HR analytics [dissertation]. 2020.

13. Al-Momani MM. Maximizing organizational performance: The synergy of AI and BI. Rev Gest Soc Ambient. 2024;18(5):e06644. DOI: https://doi.org/10.24857/rgsa.v18n5-143

14. Feldman ER, Hernandez E. Synergy in mergers and acquisitions: Typology, life cycles, and value. Acad Manag Rev. 2022;47(4):549-78. DOI: https://doi.org/10.5465/amr.2018.0345

15. Zafary F. Implementation of business intelligence considering the role of information systems integration and enterprise resource planning. J Intell Stud Bus. 2020;10(1):59-74. DOI: https://doi.org/10.37380/jisib.v10i1.563

16. Alam MRU, Shohel A, Alam M. Integrating enterprise risk management (ERM): Strategies, challenges, and organizational success. Int J Bus Econ. 2024;1(2):10-9. DOI: https://doi.org/10.62304/ijbm.v1i2.130

17. Yiu LD, Yeung AC, Cheng TE. The impact of business intelligence systems on profitability and risks of firms. Int J Prod Res. 2021;59(13):3951-74. DOI: https://doi.org/10.1080/00207543.2020.1756506

18. Paramesha M, Rane NL, Rane J. Big data analytics, artificial intelligence, machine learning, internet of things, and blockchain for enhanced business intelligence. Partners Univ Multidiscip Res J. 2024;1(2):110-33. DOI: https://doi.org/10.2139/ssrn.4855856

19. Aken JE, Chandrasekaran A, Halman JIM. Managing technological risks: A systematic approach to risk assessment and mitigation. Technol Manag J. 2021;35(4):245-60.

20. Hallikainen P, Merisalo-Rantanen H, Peffers K. Organizational factors in adopting BI systems for risk management: A cross-industry study. J Enterp Inf Manag. 2020;33(5):1123-45.

21. Sivarajah U, Kamal MM, Irani Z, Weerakkody V. Critical analysis of big data challenges and analytical methods in BI systems. J Bus Res. 2017;70:263-86. DOI: https://doi.org/10.1016/j.jbusres.2016.08.001

Downloads

Published

2025-03-12

How to Cite

1.
Musa Al-Momani M. The Impact of Business Intelligence Factors on Risk Management: A Study of Technical and Human-Administrative Risks. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2025 Mar. 12 [cited 2025 Apr. 24];4:1527. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1527