Numerical investigation of bearing capacity and lateral response of pile group considering soil interaction

Authors

  • Ali Mohammed Al-Araji Ph. D. in Civil Engineering, Department of Civil Techniques, Technical Institute of Babylon, Al-Furat Al-Awsat Technical University, Najaf, Iraq Author
  • Reza Moradi Ph. D. in Civil Engineering, Faculty of Technical and Engineering, Islamabad, Razi University, Kermanshah, Iran Author
  • Ali Mohammed Owaid Ph. D. in Civil Engineering, Ministry of Electricity, Middle Euphrates Production power, Babylon, Iraq Author https://orcid.org/0009-0005-4348-0571

DOI:

https://doi.org/10.56294/sctconf20251582

Keywords:

Bearing capacity, lateral response, pile group, soil interaction, GFRP

Abstract

Introduction: Piles play a crucial role in major structures like power plants, petrochemical complexes, offshore platforms, and bridges. Ensuring their safe and cost-effective design under lateral dynamic loads is essential. Due to the complexity of soil-pile interaction and the influence of multiple factors, further research is required.
Objective: The main objective of this research is to investigate the parameters affecting the interaction of soil and reinforced concrete pile groups.
Methods: The parameters discussed and investigated in this research include the use of UHPC concrete with different strengths instead of conventional concrete in piles, pile length, pile diameter, pile length-to-diameter ratio, and pile spacing.  
Results: The results of this research show that if the diameter of the pile is 0.6 meters, increasing the length from 9.15 to 11.65 meters and from 9.15 to 14.15 meters will increase the bearing capacity of the pile by 53% and 77%, respectively. In cases where the pile length is 9.15 meters, increasing the diameter from 0.6 to 1 meter results in a 58% increase in bearing capacity. Additionally, reducing the distance between piles from 1.8 meters to 0.8 meters enhances their bearing capacity by 37%. 
Conclusions: The findings indicate that pile dimensions and spacing significantly influence their bearing capacity. Using larger pile diameters, increasing pile length, and optimizing pile spacing can effectively enhance structural performance under dynamic lateral loads.

References

1. Iodice C, Di Laora R, Letizia N, Anoyatis G, Mandolini A. Analytical Solutions for Lateral Bearing Capacity of Piles in Nonhomogeneous Soil. Journal of Geotechnical and Geoenvironmental Engineering. 2025;151: 4024137. doi:10.1061/JGGEFK.GTENG-12429 DOI: https://doi.org/10.1061/JGGEFK.GTENG-12429

2. Huang F, Wang Y, Zhang M, Jiang W, Ji H, Pan Q. Model test study of punching shear failure mode of the bearing stratum induced by tunneling beneath an existing pile. Tunnelling and Underground Space Technology. 2025;158: 106459. doi:10.1016/j.tust.2025.106459 DOI: https://doi.org/10.1016/j.tust.2025.106459

3. Tankara S, Biswas S, Halder P, Roy S. A Comprehensive Review on the Dynamic Behaviour of Connected and Nonconnected Pile-Raft Foundations. Journal of Earthquake Engineering. 2025; 1–36. doi:10.1080/13632469.2024.2446507 DOI: https://doi.org/10.1080/13632469.2024.2446507

4. Soomro MA, Zhu Z, Aslam MS, Bilal H, Yahya A, Badruddin IA. 3D numerical modeling of the deformation and failure mechanisms of batter pile groups subjected to fault ruptures. Scientific Reports. 2025;15: 2988. doi:10.1038/s41598-024-83044-9 DOI: https://doi.org/10.1038/s41598-024-83044-9

5. Al-Darraji F, Sadique M, Yu Z, Shubbar A, Marolt Čebašek T. Performance of Confined Concrete-Filled Aluminum Tube Pile Groups under Combined Loading. Geotechnical and Geological Engineering. 2025;43: 58. doi:10.1007/s10706-024-03002-0 DOI: https://doi.org/10.1007/s10706-024-03002-0

6. Jasim MH, Al-Araji AMA. Low speed impact on sandwich beam with flexible core and face sheets reinforced with FG-CNTs. World Journal of Engineering. 2025;22: 141–147. doi:10.1108/WJE-07-2023-0236 DOI: https://doi.org/10.1108/WJE-07-2023-0236

7. Mohammed Ali Al-Araji A, Jasim MH, Al-Kasob BDH. LVI analysis on the beams with nonuniform cross-sectional area using exponential shear–strain function. World Journal of Engineering. 2024. doi:10.1108/WJE-02-2024-0064 DOI: https://doi.org/10.1108/WJE-02-2024-0064

8. Luo G, Wang Z, Kong G, Ma S, He Z, Li P, et al. Centrifuge model tests on pile groups under oblique pullout load for single point mooring system through transparent sand. Ocean Engineering. 2025;315: 119831. doi:10.1016/j.oceaneng.2024.119831 DOI: https://doi.org/10.1016/j.oceaneng.2024.119831

9. Moradi R, Khalilzadeh Vahidi E. Comparison of Numerical Techniques of Masonry Infilled RC Frames for Lateral Loads. Journal of Concrete Structures and Materials. 2018;3: 102–118. doi:10.30478/jcsm.2019.82172

10. Mohammed Ali A, Besharat Ferdosi S, Kareem Obeas L, Khalid Ghalib A, Porbashiri M. Numerical study of the effect of transverse reinforcement on compressive strength and load-bearing capacity of elliptical CFDST columns. Journal of Rehabilitation in Civil Engineering. 2024;12: 106–126. doi:10.22075/jrce.2023.29167.1764

11. Jala Y, Sawant VA, Mishra A. Numerical study on lateral response of piles in sandy slopes employing a hardening soil model. Marine Georesources & Geotechnology. 2025;43: 218–231. doi:10.1080/1064119X.2024.2324045 DOI: https://doi.org/10.1080/1064119X.2024.2324045

12. Singh S, Solanki CH, Shukla SJ. Performance analysis and load sharing of combined piled raft foundations on cohesive soil using finite element approach. Transportation Infrastructure Geotechnology. 2025;12: 1–33. doi:10.1007/s40515-024-00516-1 DOI: https://doi.org/10.1007/s40515-024-00516-1

13. Gong Z, Dai G, Chen X, Ouyang H, Hu T, Chen Z. Vertical bearing behavior and pile group effect for cemented-soil composite pile groups based on on-site experiments. Soil Dynamics and Earthquake Engineering. 2025;188: 109090. doi:10.1016/j.soildyn.2024.109090 DOI: https://doi.org/10.1016/j.soildyn.2024.109090

14. Wang Z, Zhou H, Sheil B. Effects of scour on the lateral response of piles in sand: centrifuge tests and numerical investigation. Acta Geotechnica. 2025; 1–20. doi:10.1007/s11440-024-02521-7 DOI: https://doi.org/10.1007/s11440-024-02521-7

15. Vahidi EK, Moradi R. Numerical study of the force transfer mechanism and seismic behavior of masonry infilled RC frames with windows opening. Civil Engineering Journal. 2019;5: 61–73. doi:10.28991/cej-2019-03091225 DOI: https://doi.org/10.28991/cej-2019-03091225

16. Mousavi SS, Ashtiani M. Compressive Behavior of Helical Versus Pipe Pile Groups in Sandy Soil. Geotechnical and Geological Engineering. 2025;43: 3. doi:10.1007/s10706-024-02987-y DOI: https://doi.org/10.1007/s10706-024-02987-y

17. Ali AM, Akhaveissy AH, Abbas B. Fire Behavior of Lightweight Reinforced Concrete Deep Beams and Enhanced Structural Performance via Varied Stirrup Spacing–An Integrated Study. Journal of Rehabilitation in Civil Engineering. 2024;12: 132–151. doi:10.22075/jrce.2023.31484.1889

18. Moradi R, Khalilzadeh Vahidi E. General Study of New Ideas and Practical of Friction Dampers for Passive Vibration Control of Structures. Karafan Journal. 2021;17: 239–257. doi:10.48301/kssa.2021.126575

19. Qureshi HA, Safdar M, Haseeb M, Bashir MT, Khan MA, Khatak Z, et al. Lateral capacity of group helical piles in sand: an experimental and numerical study for sustainable infrastructures. International Journal of Geotechnical Engineering. 2024;18: 728–742. doi:10.1080/19386362.2024.2406372 DOI: https://doi.org/10.1080/19386362.2024.2406372

20. Moradi R, Khalilzadeh Vahidi E. Experimental Study of Rotational-Friction Damper with Two Slip Load and Evaluation of its Performance in RC Frame under Cyclic Loading. Journal of Concrete Structures and Materials. 2021;6: 121–137. doi:10.30478/jcsm.2021.292383.1209

21. Islam MR, Turja S Das, Van Nguyen D, Kim D. Lateral response and failure mechanism of single and group piles in cement-improved soil. Results in Engineering. 2024;23: 102668. doi:10.1016/j.rineng.2024.102668 DOI: https://doi.org/10.1016/j.rineng.2024.102668

22. Rajeswari JS, Sarkar R. Adequacy of batter piles under seismic conditions: A review of past performances and investigations. Structures. 2024;61: 106022. doi:10.1016/j.istruc.2024.106022 DOI: https://doi.org/10.1016/j.istruc.2024.106022

23. Alarjy AMA, Akhaveissy AH, Al-Abbas B. Assessing the Impact of Fire on the Behavior of GFRP-reinforced Lightweight Concrete Deep Beams with Varied Stirrup Spacing: An Experimental Analysis. Karafan Journal. 2024;21: 651–671. doi:10.48301/KSSA.2024.405795.2624

24. Ahmad H. Numerical study of comparing skirt sandpile with deep cement pile to improve load‒settlement response of circular footing in layered soils: Centric and eccentric effects. Heliyon. 2025;11: e41710. doi:10.1016/j.heliyon.2025.e41710 DOI: https://doi.org/10.1016/j.heliyon.2025.e41710

25. Jabbar NF, Akhaveissy AH. An experimental study of the effect maximum coarse aggregate size and material orientation on concrete compressive strength. Multiscale and Multidisciplinary Modeling, Experiments and Design. 2025;8: 1–23. doi:10.1007/s41939-024-00650-w DOI: https://doi.org/10.1007/s41939-024-00650-w

26. Owaid AM, Akhaveissy AH, Al-Abbas BH. Retrofitting Seismically Designed Exterior Beam-Column Joints under Lateral Monotonic Loading: A Numerical Analysis Based on Experimental Testing. Journal of Rehabilitation in Civil Engineering. 2025. doi:10.22075/jrce.2024.33704.2043 DOI: https://doi.org/10.21203/rs.3.rs-4914887/v1

27. Zhang F, Dai G, Ye T, Xu J, Gong W. Evaluation of the group efficiency factor for laterally loaded pile groups. Acta Geotechnica. 2024;19: 6141–6162. doi:10.1007/s11440-024-02280-5 DOI: https://doi.org/10.1007/s11440-024-02280-5

28. Kim M, Kim Y, Ko J. Full-Scale Lateral Load Test of Large-Diameter Drilled Shaft for Building Construction on Marine Deposits. Buildings. 2024;14: 2596. doi:10.3390/buildings14092596 DOI: https://doi.org/10.3390/buildings14092596

29. Wu J, Pu L, Zhai C. A Review of Static and Dynamic py Curve Models for Pile Foundations. Buildings. 2024;14: 1507. doi:10.3390/buildings14061507 DOI: https://doi.org/10.3390/buildings14061507

30. Vijayan C, Ayothiraman R. Review of the State-of-the-Art on Response on Tapered Piles to Different Loading Conditions. Indian Geotechnical Journal. 2024;55: 393–407. doi:10.1007/s40098-023-00843-z. DOI: https://doi.org/10.1007/s40098-023-00843-z

Downloads

Published

2025-03-29

How to Cite

1.
Mohammed Al-Araji A, Moradi R, Mohammed Owaid A. Numerical investigation of bearing capacity and lateral response of pile group considering soil interaction. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2025 Mar. 29 [cited 2025 Apr. 24];4:1582. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1582