University Education 5.0: Intelligent Models for Optimizing Learning and Academic Management
DOI:
https://doi.org/10.56294/sctconf20251751Keywords:
Artificial Intelligence, Higher Education, Intelligent Models, Learning Analytics, Academic ManagementAbstract
The study examined the impact of artificial intelligence–based intelligent models on learning and academic management in higher education institutions, using a descriptive–correlational quantitative approach applied to a sample of 182 participants, including students, faculty, and administrative staff. Data were collected through a structured questionnaire, institutional analytics, and documentary records. The findings revealed significant improvements in academic performance, including increased approval rates, reduced dropout, and greater learning personalization. Administrative processes also showed marked optimization, with reductions in processing times, automation of operational tasks, and enhanced student support. Learning analytics techniques identified interaction patterns associated with performance gains and increased teacher feedback. Overall satisfaction reached high levels, confirming positive acceptance of intelligent models within the university environment. These results indicate that AI strengthened institutional efficiency and improved the educational experience, although challenges related to technological infrastructure and digital literacy persist.
References
1.
OECD. Artificial intelligence in society. Paris: OECD Publishing; 2019. https://doi.org/10.1787/eedfee77
2.
Zawacki-Richter O, Marín VI, Bond M, Gouverneur F. Systematic review of research on artificial intelligence applications in higher education – where are the educators? Int J Educ Technol High Educ. 2019;16(1):39. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0
3.
Bond M, Bedenlier S, Buntins K, Zawacki-Richter O, Kerres M. Mapping research in student engagement and educational technology in higher education: a systematic evidence map. Int J Educ Technol High Educ. 2020;17(1):2. https://doi.org/10.1186/s41239-019-0176-8 DOI: https://doi.org/10.1186/s41239-019-0176-8
4.
UNESCO. AI and education: guidance for policy-makers. Paris: UNESCO; 2021.
https://doi.org/10.56294/sctconf20251751
9 Santini Rodriguez FJ, et al
ISSN: 2953-4860
5.
Ifenthaler D, Yau JYK. Utilising learning analytics for study success: reflections on current empirical findings. In: Proceedings of the 28th International Conference on Computers in Education. 2020. DOI: https://doi.org/10.1007/978-3-319-64792-0_2
6.
García-Peñalvo FJ. Digital transformation in higher education: the hybrid learning model. Educ Knowl Soc. 2021;22:e25065.
7.
OECD. OECD digital education outlook 2021: pushing the frontiers with artificial intelligence, blockchain and robots. Paris: OECD Publishing; 2021.
8.
Hussin AA. Education 5.0: is it the future of education? Int J Acad Res Bus Soc Sci. 2018;8(9):258-266. https://doi.org/10.6007/IJARBSS/v8-i9/4593 DOI: https://doi.org/10.6007/IJARBSS/v8-i9/4593
9.
Rodríguez-Abitia G, Martínez-Pérez S. Digital transformation in higher education: competing on analytics. J Inf Technol Res. 2020;13(4):1-16. https://doi.org/10.4018/JITR.2020100101 DOI: https://doi.org/10.4018/JITR.2020100101
10.
World Economic Forum. The future of jobs report 2023. Geneva: WEF; 2023.
11.
Mishra P, Koehler MJ. Technological pedagogical content knowledge: a framework for teacher knowledge. Teach Coll Rec. 2006;108(6):1017-1054. DOI: https://doi.org/10.1177/016146810610800610
12.
Puentedura RR. Transformation, technology, and education: SAMR model. Hippasus; 2014. http://www.hippasus.com
13.
Ifenthaler D. Learning analytics dashboard applications. Am Behav Sci. 2013;57(10):1500-1509. https://doi.org/10.1177/0002764213479363 DOI: https://doi.org/10.1177/0002764213479363
14.
Siemens G. Learning analytics: the emergence of a discipline. Am Behav Sci. 2013;57(10):1380-1400. https://doi.org/10.1177/0002764213498851 DOI: https://doi.org/10.1177/0002764213498851
15.
Banihashem SK, Noroozi O, Khosravi H, Järvelä S, Niemivirta M. A systematic review of the role of learning analytics in improving feedback practices in technology-mediated learning environments. J Comput Assist Learn. 2022;38(6):1450-1470. https://doi.org/10.1111/jcal.12754 DOI: https://doi.org/10.1111/jcal.12754
16.
Daniel BK. Big data and analytics in higher education: opportunities and challenges. Br J Educ Technol. 2015;46(5):904-920. https://doi.org/10.1111/bjet.12230 DOI: https://doi.org/10.1111/bjet.12230
17.
Comisión Económica para América Latina y el Caribe (CEPAL). Transformación digital y educación superior en América Latina. Santiago de Chile: CEPAL; 2022.
18.
Creswell JW, Creswell JD. Research design: qualitative, quantitative, and mixed methods approaches. 5th ed. SAGE; 2018.
19.
Hernández-Sampieri R, Mendoza C. Metodología de la investigación. 7a ed. McGraw-Hill; 2021.
20.
Patton MQ. Qualitative research & evaluation methods. 4th ed. SAGE; 2015.
21.
Field A. Discovering statistics using IBM SPSS Statistics. 5th ed. SAGE; 2018.
22.
Tavakol M, Dennick R. Making sense of Cronbach’s alpha. Int J Med Educ. 2011;2:53-55. DOI: https://doi.org/10.5116/ijme.4dfb.8dfd
23.
Cohen L, Manion L, Morrison K. Research methods in education. 8th ed. Routledge; 2018. DOI: https://doi.org/10.4324/9781315456539
24.
Gravetter F, Wallnau L. Statistics for the behavioral sciences. 10th ed. Cengage Learning; 2017.
25.
IBM Corp. IBM SPSS Statistics for Windows, Version 28.0. 2022.
26.
Resnik DB. Ethics of research with human subjects. Springer; 2018. DOI: https://doi.org/10.1007/978-3-319-68756-8
27.
Nguyen A. Artificial intelligence for academic services optimization in universities. Comput Educ.
Salud, Ciencia y Tecnología – Serie de Conferencias. 2025; 4:1751 10
https://doi.org/10.56294/sctconf20251751 DOI: https://doi.org/10.56294/sctconf20251751
ISSN: 2953-4860
2021;174:104312. https://doi.org/10.1016/j.compedu.2021.104312 DOI: https://doi.org/10.1016/j.compedu.2021.104312
28.
Ferguson R. Learning analytics: drivers, developments and challenges. Int J Technol Enhanc Learn. 2019;11(1):5-27. https://doi.org/10.1504/IJTEL.2019.096230
29.
Alalwan N. Technology acceptance and use in higher education: a systematic review and meta-analysis. Educ Inf Technol. 2022;27:10893-10915. https://doi.org/10.1007/s10639-022-11071-z DOI: https://doi.org/10.1007/s10639-022-11014-7
30.
Williamson B, Eynon R. Algorithmic governance and education: critical perspectives on big data and learning analytics. Learn Media Technol. 2020;45(1):1-17. https://doi.org/10.1080/17439884.2019.1681423
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Francisco Javier Santini Rodriguez, Graciela Mamani Torres, Ligia Paola Herrera Murillo, Santiago Tamayo Benavides (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.