High-resolution dissociation analysis for the molecular diagnosis of cystic fibrosis in Cuba.

Authors

DOI:

https://doi.org/10.56294/sctconf20251757

Keywords:

CFTR, cystic fibrosis, HRM, sequencing

Abstract

Cystic fibrosis is a common recessive disease in the Caucasian population. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause damage to the protein it encodes. Seven mutations are directly analyzed in Cuba, representing 55.5% of the pathogenic allelic variants in cystic fibrosis patients. The high allelic heterogeneity of this gene and its varied phenotypic expression make it vitally important to detect a greater number of genetic variants that cause the disease. With this data, patients can receive better genetic counseling and personalized treatment that would improve their quality of life. It is therefore necessary to search for new variants to complete the diagnosis. The objective of this work was to identify new genetic variants in the CFTR gene and confirm the clinical diagnosis of Cystic Fibrosis. Twenty-one patients clinically diagnosed as cystic fibrosis by the National Medical Genetics Network or identified as positive through the Neonatal Screening Program were analyzed. Eleven real-time polymerase chain reaction assays were performed on the isolated DNA, followed by high-resolution dissociation curve analysis. The amplification of these eleven fragments covered the five exons of the gene with the highest number of described mutations and the adjacent intronic regions. Subsequently, the samples that showed changes in the curve pattern were sequenced. Five mutations were detected: one pathogenic, two of uncertain significance, one benign, and one with conflicting clinical significance. Point genetic variants were identified in four of the five exons analyzed. The real-time polymerase chain reaction – high resolution melting curve technique proved useful for searching for point mutations along the CFTR gene sequence, which, in combination with Sanger sequencing, will allow for the identification of new variants in the Cuban population.

References

1. Cystic Fibrosis; CF. Baltimore: Johns Hopkins University; 1995 [actualizado 23/08/2004]. http://omim.org/entry/219700 Acceso: 13/01/2018

2. Silva Filho, Castaños C, Hernán H. Cystic fibrosis in Latin America—Improving the awareness. J Cyst Fibros 2016; 15(6): 791–793 DOI: https://doi.org/10.1016/j.jcf.2016.05.007

3. Sánchez IC, Razón BR, Ramos CL, Barreiro PB, Reyes LC, Cantillo G, et al. Fibrosis quística en niños y su seguimiento durante 40 años 1977-2017. Revista Cubana de Pediatría. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S003475312019000300005&nrm=iso

4. Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, et al. The future of cystic fibrosis care: A global perspective. The Lancet. Respiratory Medicine. 2020;8(1):65–124.https://doi.org/10.1016/S2213-2600(19)30337-6ç DOI: https://doi.org/10.1016/S2213-2600(19)30337-6

5. Santana Hernández EE, Tamayo Chang VJ, Collazo Mesa T, López Reyes I, Feria Estrada F, Cala F. Caracterización clínica y genética de la fibrosis quística en la provincia de Holguín. Revista Cubana de Pediatría. 2017;89(2):136–44.

6. Collazo T, López I, Clark Y, Piloto Y, González L, Gómez M, et al. Antenatal testing for cystic fibrosis in Cuba, 1988-2011. MEDICC Rev [Internet]. 2014;16(3–4):18–21. Disponible en: http://dx.doi.org/10.37757/MR2014.V16.N3-4.5 DOI: https://doi.org/10.37757/MR2014.V16.N3-4.5

7. Rueda-Nieto S, Mondejar-Lopez P, Mira-Escolano M-P, Cutillas-Tolín A, Maceda-Roldán LA, Arense-Gonzalo JJ, et al. Analysis of the genotypic profile and its relationship with the clinical manifestations in people with cystic fibrosis: study from a rare disease registry. Orphanet J Rare Dis [Internet]. 2022;17(1):222. Disponible en: http://dx.doi.org/10.1186/s13023-022-02373-y DOI: https://doi.org/10.1186/s13023-022-02373-y

8. Farinha CM, Gentzsch M. Revisiting CFTR interactions: Old partners and new players. Int J Mol Sci [Internet]. 2021;22(24):13196. Disponible en: http://dx.doi.org/10.3390/ijms222413196 DOI: https://doi.org/10.3390/ijms222413196

9. Heching M, Shteinberg M, Golan-Tripto I, Livnat-Levanon G, Yaacoby-Bianu K, Boehm Cohen L, et al. Treatment effects of elexacaftor/tezacaftor/ivacaftor on people with cystic fibrosis heterozygous for 3849+10kbC->T and a class I variant. J Cyst Fibros [Internet]. 2025;24(3):548–51. Disponible en: http://dx.doi.org/10.1016/j.jcf.2024.11.010 DOI: https://doi.org/10.1016/j.jcf.2024.11.010

10. Collazo Mesa T. Fibrosis Quística: Mutaciones más frecuentes en la población mundial. Revista Cubana de Investigaciones Biomédicas. 2008;27:366–9.

11. Newton CR, Graham A, Heplinsol LE, Summers S, Kalsheker N, Smith JC. Analys is any point mutation in DNA.The AmplificationRefractory MutationSystem(ARMS). 1989;17. DOI: https://doi.org/10.1093/nar/17.7.2503

12. Gasparini P, Borgo G, Mastella G, Bonizzato A, Dognini M, Pignatti PF. Nine cystic fibrosis patients homozygous forthe CFTR nonsense mutation R1162X have mildor moderate lung disease. J Med Genet. 1992;29. DOI: https://doi.org/10.1136/jmg.29.8.558

13. Cutting GR, Kash LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE. A cluster of cystic fibrosis mutations in the first nucleotide binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990; 346. DOI: https://doi.org/10.1038/346366a0

14. Zielenski J, Rozmahel R, Bozon D, Kerem B, Grzelczak Z, Riordan JR, et al. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics [Internet]. 1991;10(1):214–28. Disponible en: http://dx.doi.org/10.1016/0888-7543(91)90503-7 DOI: https://doi.org/10.1016/0888-7543(91)90503-7

15. CYSMA. Cystic Fibrosis Missense Analysis Website. Molecular Genetics Laboratory of University Hospital, Montpellier. https://cysma.chu-montpellier.fr/cysma/ Acceso: 28/03/2025.

16. Phan L, Zhang H, Wang Q, Villamarin R, Hefferon T, Ramanathan A, Kattman B. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025;53(D1):D925-D931. https://doi.org/10.1093/nar/gkae977. DOI: https://doi.org/10.1093/nar/gkae977

17. Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet [Internet]. 2013;45(10):1160–7. http://dx.doi.org/10.1038/ng.2745. DOI: https://doi.org/10.1038/ng.2745

18. The Clinical and Functional TRanslation of CFTR (CFTR2). US Cystic Fibrosis Foundation, Johns Hopkins University, The Hospital for Sick Children; 2011. https://cftr2.org/ Acceso: 02/04/2025.

19. Bobadilla JL, Macek M, Fine JP, Farrell PM. Cystic fibrosis: A worldwide analysis of CFTR mutations-Correlation with incidence data and application to screening. Human mutation. 2002;19(6):575–606. DOI: https://doi.org/10.1002/humu.10041

20. Loumi O, Ferec C, Mercier B, Creff J, Fercot B, Denine R, et al. CFTR mutations in the Algerian population. J Cyst Fibros [Internet]. 2008;7(1):54–9. Available from: http://dx.doi.org/10.1016/j.jcf.2007.04.004 DOI: https://doi.org/10.1016/j.jcf.2007.04.004

21. Martínez, Javier. Detección de las mutaciones G85E y V754M en pacientes cubanos con diagnóstico clínico de Fibrosis Quística; 2017. Universidad de La Habana. La Habana, Cuba.

22. Cystic Fibrosis Mutation Database (CFTR1). Cystic Fibrosis Centre, Hospital for Sick Children, Toronto; 1989. http://www.genet.sickkids.on.ca/ Acceso: 11/04/2025.

23. Orozco L, Chávez M, Saldaña Y, Velázquez R, Carnevale A, Angel G-D. Cystic fibrosis: molecular up date and clinical implications. Rev Investig Clínica Organo Hosp Enfermedades Nutr abril de. 2006;58(2):139–52.

24. Karen Y, Sánchez L, de Mendonca E. Diagnóstico molecular de Fibrosis Quística en Venezuela. Rev Med Interna (CARACAS). 2017;33(1):36.

Downloads

Published

2025-11-26

How to Cite

1.
Collazo Mesa T, López Reyes I, Estévez Miere M, Esperón Álvarez A, Rodríguez Cala F. High-resolution dissociation analysis for the molecular diagnosis of cystic fibrosis in Cuba. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2025 Nov. 26 [cited 2026 Jan. 9];4:1757. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1757