Association of birth weight with blood pressure and renal function variables in children aged 3 to 6 years
DOI:
https://doi.org/10.56294/sctconf20251785Keywords:
Intrauterine growth retardation, Glomerular filtration rateAbstract
INTRODUCTION:
Intrauterine growth retardation (IUGR) has recently been related to an increase in blood pressure figures in different countries.
OBJECTIVE
The objective of this research was to evaluate the relationship between blood pressure and kidney function with birth weight in children aged 3 to 6 years.
MATERIAL AND METHODS
Thirty-two healthy, normotensive children with a history of low birth weight due to IUGR or normal birth weight, aged between 3 and 6 years, were studied in the Marianao municipality of Havana. Their nutritional status was determined based on their body surface area, using the Haycock formula expressed in square meters. Arterial, systolic and diastolic pressures were measured using the Riva Rocci-Korotkoff method, calculating the average. Glomerular filtration rate (GFR) was determined using the Schwartz 2 formula (GFR WS) and Pottel for serum creatinine and for serum Cystatin C using Pottel. The renal and blood pressure variables were adjusted to body surface area and analyzed using Pearson's correlation. Ethical standards for research on humans were respected.
RESULTS
Systolic, diastolic and mean arterial pressures, as well as GFR, were inversely correlated with birth weight. Children with a history of low birth weight due to IUGR presented higher blood pressure values, although not pathological with respect to their peers; the IFG values in this group of children were higher with respect to their peers, calculated both by creatinine through the Pottel method and serum Cystatin C.
CONCLUSION
There is a tendency for higher blood pressure values in children with low birth weight due to IUGR. The correlation between IFG and birth weight supports theories about the influence of hyperfiltration on high blood pressure, so we suggest more extensive studies of the variables studied, as well as the use of the Pottel formula for its study.
References
1. McEvoy JW, McCarthy CP, Bruno RM, et.al 2024 ESC Guideline for the management of elevated blood pressure and hypertension of the European Society of Cardiology and endorsed by the European Society of Endocrinology and the European Stroke Organization. European Heart Journal. October 2024;45(38):3912-4018. Available from: https://www.academic.oup.com/eurheartj/article/45/38/3912/7741010.
2. Rosas-Peralta. M, Medina-Concebida. LE, Borrayo-Sánchez. G, et.al. Hipertensión arterial sistémica en el niño y adolescente. Rev Med Inst Mex Seguro Soc. 2016;54(1):52-66. Available from: https://www.redalyc.org/articulo.oa?id=457746536003.
3. Santiesteban IE, Mesa. LB, Ramos. AP, et. al. Desbalance glomérulo-tubular en niños y adolescentes con antecedentes de bajo peso al nacer. Revista Habanera de Ciencias Médicas. 2016;15(3):484-93. Available from: http://www.revhabanera.sld.cu/index.php/rhab/article/view/1067/1043.
4. Schreuder MF, Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int. 2007;72(3):265-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17495859. DOI: https://doi.org/10.1038/sj.ki.5002307
5. Ritz E, Amann K, Koleganova N, Benz K. Prenatal programming-effects on blood pressure and renal function. Nature reviews Nephrology. 2011;7(3):137-44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21283139. DOI: https://doi.org/10.1038/nrneph.2011.1
6. Yiu V, Buka S, Zurakowski D, McCormick M, Brenner B, Jabs K. Relationship between birthweight and blood pressure in childhood. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1999;33(2):253-60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10023635. DOI: https://doi.org/10.1016/S0272-6386(99)70297-0
7. Chong. E, Yosypiv. I. Development programming of hypertension and kidney disease. International Journal of Nephrology. 2012;2012:15. Available from: https://www.hindawi.com/journals/ijn/2012/760580/. DOI: https://doi.org/10.1155/2012/760580
8. Goldblatt H, Lynch J. Studies on expermiental hypertension: the production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59(3):347-79. Available from: https://www.pubmed.ncbi.nlm.nih.gov/19870251/. DOI: https://doi.org/10.1084/jem.59.3.347
9. Hemachandra AH, Klebanoff MA, Furth SL. Racial disparities in the association between birth weight in the term infant and blood pressure at age 7 years: results from the collaborative perinatal project. Journal of the American Society of Nephrology : JASN. 2006;17(9):2576-81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16870709. DOI: https://doi.org/10.1681/ASN.2005090898
10. Mejías. AP, Fox. MOB, Ramos. AP, et. al. Desbalance glomérulo-tubular en la fisiopatología de la hipertensión arterial asociada al bajo peso al nacer. Revista Habanera de Ciencias Médicas. 2011;10(2):224-32. Available from: http://www.revhabanera.sld.cu/index.php/rhab/article/view/1830.
11. Zanardo V, Bertin M, Luca Fd, Zaninotto M. Albuminuria and sodiuria in IUGR children. The Journal of Maternal-Fetal & Neonatal Medicine. 2015;28(3):362-5. Available from: https://www.pubmed.ncbi.nlm.nih.gov/24853042/. DOI: https://doi.org/10.3109/14767058.2014.916684
12. Martinez-Aguayo. A, Aglony. M, Bancalari. R, Avalos. C, et.al. Birth weight is inversely associated with blood pressure and serum aldosterone and cortisol levels in children. . Clin Endocrinol (Oxf) 2012;76(5):713-8. Available from: https://www.pubmed.ncbi.nlm.nih.gov/22145676/. DOI: https://doi.org/10.1111/j.1365-2265.2011.04308.x
13. Strufaldi. M, Silva. E, Franco. M, Puccini. R. Blood pressure levels in childhood: probing the relative importance of birth weight and current size. . Eur J Pediatr. 2009;168(5):619-24. Available from: https://www.pubmed.ncbi.nlm.nih.gov/18830709/. DOI: https://doi.org/10.1007/s00431-008-0813-z
14. Pereira. J, Rondó. P, Lemos. J, Souza. JPd, Dias. R. The influence of birthweight on arterial blood pressure of children. . Clin Nutr 2010;29(3):337-40. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0261561410000105/. DOI: https://doi.org/10.1016/j.clnu.2010.01.005
15. Chen. X, Zhang. Z, George. L, et.al. Birth measurements, family history, and environmental factors associated with later-life hypertensive status. Am J Hypertens 2012;25(4):464–71. Available from: https://www.pubmed.ncbi.nlm.nih.gov/pmc/articles/PMC3309157/. DOI: https://doi.org/10.1038/ajh.2011.262
16. Eriksson. J, Forsén. T, Tuomilehto. J, Osmond. C, Barker. D. Early growth and coronary heart disease in later life: longitudinal study. . BMJ Case Rep. 2001;322(7292):949–53. . Available from: https://www.pubmed.ncbi.nlm.nih.gov/11312225/. DOI: https://doi.org/10.1136/bmj.322.7292.949
17. Falkner. B, Hulman. S, Kushner. H. Effect of birth weight on blood pressure and body size in early adolescence. Hypertension. 2004;43(2):203-7. Available from: https://www.pubmed.ncbi.nlm.nih.gov/14676220/. DOI: https://doi.org/10.1161/01.HYP.0000109322.72948.24
18. Eriksson. J. Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr 2011;94(6):1799S–802S. Available from: https://www.pubmed.ncbi.nlm.nih.gov/21613556/. DOI: https://doi.org/10.3945/ajcn.110.000638
19. Paixão. AD, Alexander. BT. How the Kidney Is Impacted by the Perinatal Maternal Environment to Develop Hypertension. Biol Reprod. 2013;89(6):144. Available from: https://www.pubmed.ncbi.nlm.nih.gov/24227755/. DOI: https://doi.org/10.1095/biolreprod.113.111823
20. Moreno VM, Cabrerizo MM, Gandoy JBG, et.al. Evalúan parámetros antropométricos como indicadores de la distribución de la grasa corporal. Sociedad Iberoamericana de Información Científica. 2007. Available from: https://www.siicsalud.com/des/expertoimpreso.php/85727./.
21. Hipertensión arterial. Guía para la prevención, diagnóstico y tratamiento/ Comisión Nacional Técnica Asesora del Programa de Hipertensión arterial. La Habana: Editorial Ciencias Médicas; 2008; 36-38.
22. Schwartz. G, Haycock. G, Edelman. C, Spitzer. A. A simple estimate of glomerular filtration rate in children derived form body lenght and plasma creatinine. Pediatric Nephrology. 1976;58:259-63. Available from: https://www.pediatrics.aappublications,org/content/58/2/259.long. DOI: https://doi.org/10.1542/peds.58.2.259
23. Pottel H, Pierre D, et.al. Estimated glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplantation. 2017;32(3):405-7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58337496/.
24. Carrera. ALM. Importancia ético-científica de los protocolos sobre las investigaciones en humanos. Medleg Costa Rica. 2003;20(1). Available from: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152003000100005
25. Hoy W, Rees M, Kile E, Mathews JD, Wang Z. A new dimension to the Barker hypothesis: Low birthweight and susceptibility to renal disease. Kidney International. septiembre 1999;56(3):1072-7. Available from: https://www.pubmed.ncbi.nlm.nih.gov/10469376/. DOI: https://doi.org/10.1046/j.1523-1755.1999.00633.x
26. Delgado. EG, Díaz. YR, Gómez. YG. Asociación entre el peso al nacer y factores de riesgo cardiometabólicos en niños de Bucaramanga, Colombia. Nutrición Hospitalaria. 2017;34(5). Available from: https://www.scielo.isciiii.es/scielo.php?script=sci_arttext&pid=S0212-16112017000500013/.
27. Pérez. M, Valdés. R, Tasis. M. Bajo peso al nacer y su relación con la hipertensión arterial en adolescentes y jóvenes. Revista Cubana de Medicina. 2004;43(5-6). Available from: https://www.scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232004000500002.
28. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps C, Clark PMS. Type 2 diabetes mellitus, hypertension and hyperlipidemia (syndrome X): Relation to reduced fetal growth. Diabetologia. 1993;36:62-7. Available from: https://www.link.springer.com/article/10.1007/BF00399095. DOI: https://doi.org/10.1007/BF00399095
29. Cosmi E, Fanelli T, Visentin S, Trevisanuto D, Zanardo V. Consequences in infants that were intrauterine growth restricted. Journal of pregnancy. 2011;2011:364381. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21547088. DOI: https://doi.org/10.1155/2011/364381
30. Law. C, Shiell. A. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. Journal of Hypertension. 1996;14(8):935-41. Available from: https://www.journals.Iww.com/jhypertension/Abstract/1996/08000/Is_blood_pressure_inversely_related_to_birth.2.aspx. DOI: https://doi.org/10.1097/00004872-199608000-00002
31. Lenfant C. Low birth weight and blood pressure. Metabolism: Clinical and Experimental. 2008;57(2):S32–S5. Available from: https://www.metabolismjournal.com/article/S0026-0495(08)00253-9/pdf. DOI: https://doi.org/10.1016/j.metabol.2008.07.013
32. Keijzer-Venn. M, Finken. M. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in the Netherlands. Pediatrics. 2005;116(3):725-31. Available from: https://www.pubmed.ncbi.nlm.nih.gov/16140714/. DOI: https://doi.org/10.1542/peds.2005-0309
33. Ku. E, Xie. D, Shlipak. M, et.al. Change in Measured GFR Versus eGFR and CKD Outcomes. Journal of the American Society of Nephrology. 2016;27(7):2196-204. Available from: https://www.pubmed.ncbi.nlm.nih.gov/26604213/. DOI: https://doi.org/10.1681/ASN.2015040341
34. Barbati A, Cappuccini B, Aisa MC, Grasselli C, Zamarra M, Bini V, et al. Increased Urinary Cystatin-C Levels Correlate with Reduced Renal Volumes in Neonates with Intrauterine Growth Restriction. Neonatology. 2016;109(2):154-60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26756983. DOI: https://doi.org/10.1159/000441273
35. Bukabau J, Yayo E, et. al. Perfomance of creatinine or cystacin C based equations to estimate glomerular filtration rate in sub-Saharan African populations. . Kidney Int. 2019;95:1181-9. Available from: https://www.kidney-international.org/article/S0085-2538(19)30042-0/fulltext. DOI: https://doi.org/10.1016/j.kint.2018.11.045
36. Vehaskari V, Woods. L. Prenatal programming of hypertension: lessons from experimental models. . J Am Soc Nephrol. 2005;16:254-6. Available from: https://www.pubmed.ncbi.nlm.nih.gov/16049066/. DOI: https://doi.org/10.1681/ASN.2005030300
37. Brenner B, Chertow. G. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1994;3:171-5. Available from: https://www.pubmed.ncbi.nlm.nih.gov/8311070/. DOI: https://doi.org/10.1016/S0272-6386(12)80967-X
38. Bagby. S. Maternal nutrition, low nephron number, and hypertension in later life: pathways of nutritional programming. J Nutr. 2007;137:1066-72. Available from: https://www.pubmed.ncbi.nlm.nih.gov/17374679/. DOI: https://doi.org/10.1093/jn/137.4.1066
39. Bakker H, Gaillard R, Hofman A, Reiss IK, Steegers EA, Jaddoe VW. Fetal first trimester growth is not associated with kidney outcomes in childhood. Pediatric nephrology. 2017;32(4):651-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27796619. DOI: https://doi.org/10.1007/s00467-016-3537-8
40. Skorecki K, Chertow GM, Marsden PA, Taal MW, Yu ASL, Wasser WG. BRENNER & RECTOR’S. THE KIDNEY. Karl Skorecki GMC, Philip A. Marsden, Maarten W. Taal ASLY, editors: Elsevier; 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carlos Rolando Maldonado Bernardo, Adina Pérez Mejías, Miguel Alfonso Álvarez Fornaris (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.