Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years

Authors

  • Walter Aviles-Yataco Facultad de Ingeniería. Universidad Tecnológica del Perú. Lima, Perú. Author
  • Brian Meneses-Claudio Facultad de Ingeniería. Universidad Tecnológica del Perú. Lima, Perú. Author

DOI:

https://doi.org/10.56294/sctconf202235

Keywords:

Breast Cancer, Diagnosis, Neural Networks, Deep Learning

Abstract

One of the fatal diseases that occurs in women is breast cancer and is associated with late diagnosis and poor access to medical care according to the patient's needs, therefore neural networks play a relevant role in detection of breast cancer and aims to be a support to guarantee its accuracy and reliability in cancer results. Therefore, the aim of the present systematic review is to learn how neural networks help to improve accuracy in breast cancer diagnosis through image recognition. For this, the formula generated with the PICO methodology was used; Likewise, the first result was 203 investigations related to the topic and based on the established inclusion and exclusion criteria, 20 final free access scientific articles were selected from the Scopus database. In relation to the results, it was found that the use of neural networks in the diagnosis of breast cancer, especially convolutional neural networks (CNN), has proven to be a promising tool to improve the accuracy and early detection of the disease, reaching achieve an accuracy of 98 % in the recognition of clinical images, which means a big difference compared to traditional methods. On the other hand, although there are challenges such as the limited availability of high-quality data sets and bias in training data, it is suggested to investigate the development of methods that integrate multiple sources of information and the use of deep learning techniques.

References

1. Agnes, S.A. et al. (2020) ‘Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN)’, Journal of Medical Systems, 44(1), pp. 1–9. Available at: https://doi.org/10.1007/S10916-019-1494-Z/METRICS. DOI: https://doi.org/10.1007/s10916-019-1494-z

2. Ahila, A. et al. (2022) ‘Meta-Heuristic Algorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images’, Front in Oncology, 12, pp. 1–14. Available at: https://doi.org/10.3389/fonc.2022.834028. DOI: https://doi.org/10.3389/fonc.2022.834028

3. Aidossov, N. et al. (2023) ‘An Integrated Intelligent System for Breast Cancer Detection at Early Stages Using IR Images and Machine Learning Methods with Explainability’, SN Computer Science, 4(2), pp. 1–16. Available at: https://doi.org/10.1007/S42979-022-01536-9/TABLES/9. DOI: https://doi.org/10.1007/s42979-022-01536-9

4. Algarni, A., Aldahri, B.A. and Alghamdi, H.S. (2021) ‘Convolutional neural networks for breast tumor classification using structured features’, in 2021 International Conference of Women in Data Science at Taif University, WiDSTaif . TU - Saudi Arabia: Institute of Electrical and Electronics Engineers Inc., pp. 1–5. Available at: https://doi.org/10.1109/WIDSTAIF52235.2021.9430225. DOI: https://doi.org/10.1109/WiDSTaif52235.2021.9430225

5. Alshehri, A. and Alsaeed, D. (2022) ‘Breast Cancer Detection in Thermography Using Convolutional Neural Networks (CNNs) with Deep Attention Mechanisms’, Applied Sciences , 12(12922), pp. 1–19. Available at: https://doi.org/10.3390/APP122412922. DOI: https://doi.org/10.3390/app122412922

6. Ascanio VT, Ron M, Hernández-Runque E, Sánchez-Tovar L, Hernández J, Jiménez M. Trabajadores con discapacidad y significación del proceso Salud-Trabajo. Visibilizando claves para la prevención. Salud, Ciencia y Tecnología 2022;2:224‑224. https://doi.org/10.56294/saludcyt2022224. DOI: https://doi.org/10.56294/saludcyt2022224

7. Bharati, S., Podder, P. and Hossain Mondal, M.R. (2020) ‘Artificial Neural Network Based Breast Cancer Screening: A Comprehensive Review’, International Journal of Computer Information Systems and Industrial Management Applications, 12(1), pp. 125–137. Available at: https://arxiv.org/abs/2006.01767 (Accessed: 9 October 2023).

8. Blanco SMD, Hernández YC, Gerona YG, Muñoz LAP. El proceso de descentralización universitaria: influencia en los servicios de salud en Mantua. Salud, Ciencia y Tecnología - Serie de Conferencias 2022;1:306‑306. https://doi.org/10.56294/sctconf2022306. DOI: https://doi.org/10.56294/sctconf2022306

9. Castillo JIR. Cultural competence in medical and health education: an approach to the topic. Seminars in Medical Writing and Education 2022;1:13‑13. https://doi.org/10.56294/mw202213. DOI: https://doi.org/10.56294/mw202213

10. Castillo-González W, Lepez CO, Bonardi MC. Chat GPT: a promising tool for academic editing. Data and Metadata 2022;1:23‑23. https://doi.org/10.56294/dm202223. DOI: https://doi.org/10.56294/dm202223

11. Castillo-Gonzalez W. ChatGPT and the future of scientific communication. Metaverse Basic and Applied Research 2022;1:8‑8. https://doi.org/10.56294/mr20228. DOI: https://doi.org/10.56294/mr20228

12. Castro YH, Castro CH, Pita GA, Pérez MLL, Campo MCV. Caracterización del paciente alcohólico y su familia. Área de salud de Viñales. Salud, Ciencia y Tecnología - Serie de Conferencias 2022;1:303‑303. https://doi.org/10.56294/sctconf2022303. DOI: https://doi.org/10.56294/sctconf2022303

13. Cheng Jian, L. et al. (2023) ‘Vector Deep Fuzzy Neural Network for Breast Cancer Classification’, Sensors and Materials, 35(3), pp. 795–811. Available at: https://sensors.myu-group.co.jp/sm_pdf/SM3211.pdf (Accessed: 9 October 2023). DOI: https://doi.org/10.18494/SAM4121

14. Cirulli A, Godoy A. Gender, transsexuality and labor insertion. Community and Interculturality in Dialogue 2022;2:28‑28. https://doi.org/10.56294/cid202228. DOI: https://doi.org/10.56294/cid202228

15. Clift, A.K. et al. (2023) ‘Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study’, BMJ, 381, pp. 1–18. Available at: https://doi.org/10.1136/BMJ-2022-073800. DOI: https://doi.org/10.1136/bmj-2022-073800

16. Concepción AAR, Chagime RG. World Metaverse Index (WMI): a necessary tool for assessing metaverse implementation and its impact globally. Metaverse Basic and Applied Research 2022;1:5‑5. https://doi.org/10.56294/mr20225. DOI: https://doi.org/10.56294/mr20225

17. Davoudi, K. and Thulasiraman, P. (2021) ‘Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem’, Simulation, 97(8), pp. 511–527. Available at: https://doi.org/10.1177/0037549721996031. DOI: https://doi.org/10.1177/0037549721996031

18. Elmore, J.G. et al. (2015) ‘Diagnostic Concordance Among Pathologists Interpreting Breast Biopsy Specimens’, JAMA, 313(11), pp. 1122–1132. Available at: https://doi.org/10.1001/JAMA.2015.1405. DOI: https://doi.org/10.1001/jama.2015.1405

19. ElOuassif, B. et al. (2021) ‘Classification techniques in breast cancer diagnosis: A systematic literature review’, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9(1), pp. 50–77. Available at: https://doi.org/10.1080/21681163.2020.1811159. DOI: https://doi.org/10.1080/21681163.2020.1811159

20. Fagbuagun, O.A. et al. (2022) ‘Breast Cancer Diagnosis in Women Using Neural Networks and Deep Learning’, Journal of ICT Research and Applications, 16(2), pp. 152–166. Available at: https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2022.16.2.4. DOI: https://doi.org/10.5614/itbj.ict.res.appl.2022.16.2.4

21. Ferro YE, Trujillo DM, Llibre JJ. Prevalencia y asociaciones de riesgo del deterioro cognitivo leve en personas mayores de una comunidad. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:12‑12. https://doi.org/10.56294/ri202212. DOI: https://doi.org/10.56294/ri202212

22. Fonseca DAC, Vásconez JLO, Ortiz RJL, Haro KGV, Carangui DAA. Fibroadenoma gigante de mama, reporte de un caso y revisión de la literatura. Salud, Ciencia y Tecnología 2022;2:87‑87. https://doi.org/10.56294/saludcyt202287. DOI: https://doi.org/10.56294/saludcyt202287

23. Fuertes LDC, Barrero LPF, Tatis WJO, Castiblanco ZLH, Rojas MG. Analysis of the consume of fitness dairy products in Colombia. Health Leadership and Quality of Life 2022;1:15‑15. https://doi.org/10.56294/hl202215. DOI: https://doi.org/10.56294/hl202215

24. Gardezi, S.J.S. et al. (2019) ‘Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review’, Journal of medical Internet research, 21(7). Available at: https://doi.org/10.2196/14464. DOI: https://doi.org/10.2196/14464

25. Ginarte MJG, Landrove-Escalona EA, Moreno-Cubela FJ, Yano RT del. Visibilidad e impacto de la producción científica sobre enseñanza aprendizaje de los pares craneales publicada en Scopus. Data and Metadata 2022;1:4‑4. https://doi.org/10.56294/dm20224. DOI: https://doi.org/10.56294/dm20224

26. González ME, Alfonso AP, Ramos OD, Horta YR, Carrera YR, Pita YL. Factores biopsicosociales de discapacidad en adultos mayores. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:19‑19. https://doi.org/10.56294/ri202219. DOI: https://doi.org/10.56294/ri202219

27. Gonzalez-Argote J. Effective communication and shared decision making: Theoretical approach from the doctor-patient relationship approach. Seminars in Medical Writing and Education 2022;1:12‑12. https://doi.org/10.56294/mw202212. DOI: https://doi.org/10.56294/mw202212

28. Gonzalez-Argote J. Patterns in Leadership and Management Research: A Bibliometric Review. Health Leadership and Quality of Life 2022;1:10‑10. https://doi.org/10.56294/hl202210. DOI: https://doi.org/10.56294/hl202210

29. Gonzalez-Argote J. Uso de la realidad virtual en la rehabilitación. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:24‑24. https://doi.org/10.56294/ri202224. DOI: https://doi.org/10.56294/ri202224

30. Hakim, A.N.R., Prajitno, P. and Soejoko, D.S. (2021) ‘Microcalcification detection in mammography image using computer-aided detection based on convolutional neural network’, in Proceedings of the International Conference and School on Physics in Medicine and Biosystem. Yakarta - Indonesia: American Institute of Physics Inc., pp. 23–54. Available at: https://doi.org/10.1063/5.0047828/948074. DOI: https://doi.org/10.1063/5.0047828

31. Hakkoum, H., Idri, A. and Abnane, I. (2021) ‘Assessing and Comparing Interpretability Techniques for Artificial Neural Networks Breast Cancer Classification’, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 9(6), pp. 587–599. Available at: https://doi.org/10.1080/21681163.2021.1901784. DOI: https://doi.org/10.1080/21681163.2021.1901784

32. Hameed, Z. et al. (2022) ‘Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network’, Scientific Reports 2022 12:1, 12(1), pp. 1–21. Available at: https://doi.org/10.1038/s41598-022-19278-2. DOI: https://doi.org/10.1038/s41598-022-19278-2

33. Hosseinzadeh Kassani, S. et al. (2019) ‘Classification of Histopathological Biopsy Images Using Ensemble of DeepLearning Networks’, in CASCON’ 19. Toronto - Canada: IBM Corporation, pp. 4–6. Available at: http://arxiv.org/abs/1704.04861 (Accessed: 9 October 2023).

34. Husaini, M.A.S. Al et al. (2020) ‘A Systematic Review of Breast Cancer Detection Using Thermography and Neural Networks’, IEEE Access, 8, pp. 208922–208937. Available at: https://doi.org/10.1109/ACCESS.2020.3038817. DOI: https://doi.org/10.1109/ACCESS.2020.3038817

35. Jabeen, K. et al. (2023) ‘BC2NetRF: Breast Cancer Classification from Mammogram Images Using Enhanced Deep Learning Features and Equilibrium-Jaya Controlled Regula Falsi-Based Features Selection’, Diagnostics, 13(7), p. 1238. Available at: https://doi.org/10.3390/DIAGNOSTICS13071238. DOI: https://doi.org/10.3390/diagnostics13071238

36. Kumar, P.P. and Bai, V.M.A. (2022) ‘Breast Cancer Detection on Mammographic Images using Hyper Parameter Tuning & Optimization: A Convolutional Neural Network & Transfer Learning Approach’, International Journal of Engineering Trends and Technology, 70(9), pp. 76–92. Available at: https://doi.org/10.14445/22315381/IJETT-V70I9P208. DOI: https://doi.org/10.14445/22315381/IJETT-V70I9P208

37. Lepez CO, Galbán PA, Canova-Barrios C, Machuca-Contreras F. Online and Social Media Presence (Facebook, Twitter, Instagram, and YouTube) of Civil Associations, Mutual Associations, and Foundations in Argentine Nursing. Metaverse Basic and Applied Research 2022;1:13‑13. https://doi.org/10.56294/mr202213. DOI: https://doi.org/10.56294/mr202213

38. Lepez CO, Quisbert EJ, Gomez ME, Simeoni IA. Dimensions of psychosocial care in the teaching profession. Community and Interculturality in Dialogue 2022;2:35‑35. https://doi.org/10.56294/cid202235. DOI: https://doi.org/10.56294/cid202235

39. Levinstein D. Paternity and Legal Abortion: A Comprehensive Analysis of Rights, Responsibilities and Social Impact. Community and Interculturality in Dialogue 2022;2:30‑30. https://doi.org/10.56294/cid202230. DOI: https://doi.org/10.56294/cid202230

40. Martínez Díaz, J.D., Ortega Chacón, V. and Muñoz Ronda, F.J. (2016) ‘El diseño de preguntas clínicas en la práctica basada en la evidencia: modelos de formulación’, Enfermería Global, 15(43), pp. 431–438. Available at: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1695-61412016000300016&lng=es&nrm=iso&tlng=es (Accessed: 9 October 2023). DOI: https://doi.org/10.6018/eglobal.15.3.239221

41. Martínez SM, Tobón ST, Gonzales-Sánchez A del C, López-Quesada G, Romero-Carazas R. Training projects, Virtual Education and Pandemic by COVID-19: from opportunity analysis to strategic decision making. Data and Metadata 2022;1:40‑40. https://doi.org/10.56294/dm202278. DOI: https://doi.org/10.56294/dm202278

42. Miranda AIG, Campo MCV, Serra JLG, López YV, Falcón YP. Discapacidad y funcionabilidad de los adultos mayores. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:11‑11. https://doi.org/10.56294/ri202211. DOI: https://doi.org/10.56294/ri202211

43. Montano-Silva RM, Padín-Gámez Y, Abraham-Millán Y, Ruiz-Salazar R, Leyva-Samuel L, Crispín-Rodríguez D. Community intervention on oral cancer in high risk patients. Community and Interculturality in Dialogue 2022;2:37‑37. https://doi.org/10.56294/cid202237. DOI: https://doi.org/10.56294/cid202237

44. Mridha, K. (2021) ‘Early Prediction of Breast Cancer by using Artificial Neural Network and Machine Learning Techniques’, in Proceedings - 2021 IEEE 10th International Conference on Communication Systems and Network Technologies, CSNT 2021. Bhopal -India: Institute of Electrical and Electronics Engineers Inc., pp. 582–587. Available at: https://doi.org/10.1109/CSNT51715.2021.9509658. DOI: https://doi.org/10.1109/CSNT51715.2021.9509658

45. Murtaza, G., Shuib, L., Mujtaba, G., et al. (2020) ‘Breast Cancer Multi-classification through Deep Neural Network and Hierarchical Classification Approach’, Multimedia Tools and Applications, 79(21–22), pp. 15481–15511. Available at: https://doi.org/10.1007/S11042-019-7525-4/METRICS. DOI: https://doi.org/10.1007/s11042-019-7525-4

46. Murtaza, G., Shuib, L., Wahab, A.W.A., et al. (2020) ‘Ensembled deep convolution neural network-based breast cancer classification with misclassification reduction algorithms’, Multimedia Tools and Applications, 79(25–26), pp. 18447–18479. Available at: https://doi.org/10.1007/S11042-020-08692-1/METRICS. DOI: https://doi.org/10.1007/s11042-020-08692-1

47. Nasser, M. and Yusof, U.K. (2023) ‘Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction’, Diagnostics 2023, Vol. 13, Page 161, 13(1), p. 161. Available at: https://doi.org/10.3390/DIAGNOSTICS13010161. DOI: https://doi.org/10.3390/diagnostics13010161

48. Olaya HDA, Atocha MRÁ, Claudio BAM. Empowerment and work performance of the personnel of a pharmaceutical company. Health Leadership and Quality of Life 2022;1:9‑9. https://doi.org/10.56294/hl20229. DOI: https://doi.org/10.56294/hl20229

49. Olivera IA, González MJP, Paz DM, Castellón LP. Formative Evaluation and Information Management: alternative pedagogical support to teachers in the Information Sciences career. Data and Metadata 2022;1:30‑30. https://doi.org/10.56294/dm202268. DOI: https://doi.org/10.56294/dm202268

50. Organización Mundial de la Salud (2023) Marco de aplicación de la iniciativa mundial contra el cáncer de mama: evaluación, fortalecimiento y expansión de los servicios de detección precoz y tratamiento del cáncer de mama. Available at: https://www.who.int/es/publications/i/item/9789240067134 (Accessed: 9 October 2023).

51. Ortega KVT, Heredia FRC, Peralta SMS, Vázquez MJO. La hiperuricemia como predictor y herramienta de tamizaje para preeclampsia. Salud, Ciencia y Tecnología 2022;2:220‑220. https://doi.org/10.56294/saludcyt2022220. DOI: https://doi.org/10.56294/saludcyt2022220

52. Osorio AAS, Sánchez MO, Jiménez YB. Ascitis quilosa posterior a resección de quiste mesentérico. Informe de caso y revisión de la literatura. Salud, Ciencia y Tecnología 2022;2:133‑133. https://doi.org/10.56294/saludcyt2022133. DOI: https://doi.org/10.56294/saludcyt2022133

53. Pérez TEL, Pérez RSM, Pérez RJM, Herrera LFZ. Estrategias metodológicas para reforzar el proceso de enseñanza-aprendizaje en niños de educación básica. Salud, Ciencia y Tecnología 2022;2:254‑254. https://doi.org/10.56294/saludcyt2022254. DOI: https://doi.org/10.56294/saludcyt2022254

54. Pérez-Del-Vallín V. Development of communication skills in the health sector. Seminars in Medical Writing and Education 2022;1:5‑5. https://doi.org/10.56294/mw20225. DOI: https://doi.org/10.56294/mw20225

55. Quevedo NLC, Huamani ELM, Ruiz GEZ, Claudio BAM. Democratic leadership and administrative management in a private university in northern Lima. Health Leadership and Quality of Life 2022;1:5‑5. https://doi.org/10.56294/hl20225. DOI: https://doi.org/10.56294/hl20225

56. Quispe, A.M. et al. (2021) ‘Serie de Redacción Científica: Revisiones Sistemáticas’, Revista del cuerpo médico del HNAAA, 14(1), pp. 94–99. Available at: http://www.scielo.org.pe/pdf/rcmhnaaa/v14n1/2227-4731-rcmhnaaa-14-01-94.pdf (Accessed: 9 October 2023). DOI: https://doi.org/10.35434/rcmhnaaa.2021.141.906

57. Ramos EEA, Veliz AXL, Ruiz GEZ, Claudio BAM. Multidimensional approach to service quality and user satisfaction in the context of health care. Health Leadership and Quality of Life 2022;1:13‑13. https://doi.org/10.56294/hl202213. DOI: https://doi.org/10.56294/hl202213

58. Rodríguez FAR, Flores LG, Vitón-Castillo AA. Artificial intelligence and machine learning: present and future applications in health sciences. Seminars in Medical Writing and Education 2022;1:9‑9. https://doi.org/10.56294/mw20229. DOI: https://doi.org/10.56294/mw20229

59. Rodriguez M del V. Gender, gender-based violence and training on the Micaela Law. Community and Interculturality in Dialogue 2022;2:29‑29. https://doi.org/10.56294/cid202229. DOI: https://doi.org/10.56294/cid202229

60. Rodríguez-Pérez JA. Strengthening the Implementation of the One Health Approach in the Americas: Interagency Collaboration, Comprehensive Policies, and Information Exchange. Seminars in Medical Writing and Education 2022;1:11‑11. https://doi.org/10.56294/mw202211. DOI: https://doi.org/10.56294/mw202211

61. Rojas OD, Valdés AO, García IA, Hernández FP. Tareas Docentes de la asignatura Matemática para los estudiantes de la carrera Higiene y Epidemiologia y Técnico Medio en Vigilancia y Lucha Antivectorial. Salud, Ciencia y Tecnología - Serie de Conferencias 2022;1:298‑298. https://doi.org/10.56294/sctconf2022298. DOI: https://doi.org/10.56294/sctconf2022298

62. Romero-Carazas R, Mora-Barajas JG, Villanueva-Batallanos M, Bernedo-Moreira DH, Romero IA, Rodríguez MJR, et al. Information management in the area of occupational health and safety for the prevention of occupational accidents in companies. Data and Metadata 2022;1:32‑32. https://doi.org/10.56294/dm202270. DOI: https://doi.org/10.56294/dm202270

63. Sánchez Cauce, R., Pérez Martín, J. and Luque, M. (2021) ‘Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data’, Computer Methods and Programs in Biomedicine, 204(1), pp. 1–9. Available at: https://doi.org/10.1016/J.CMPB.2021.106045. DOI: https://doi.org/10.1016/j.cmpb.2021.106045

64. Sánchez Martín, M. et al. (2023) ‘And, at first, it was the research question… The PICO, PECO, SPIDER and FINER formats [Y, al principio, fue la pregunta de investigación … Los formatos PICO, PECO, SPIDER y FINER]’, Espiral. Cuadernos del Profesorado, 16(32), pp. 126–136. Available at: https://doi.org/10.25115/ECP.V16I32.9102. DOI: https://doi.org/10.25115/ecp.v16i32.9102

65. Santiesteban YF, López MD, Pimentel JFP, Marrero IG, Álvarez JD. Factores psicosociales asociados al embarazo en la adolescencia. Salud, Ciencia y Tecnología - Serie de Conferencias 2022;1:310‑310. https://doi.org/10.56294/sctconf2022310. DOI: https://doi.org/10.56294/sctconf2022310

66. Soto IBR, Leon NSS. How artificial intelligence will shape the future of metaverse. A qualitative perspective. Metaverse Basic and Applied Research 2022;1:12‑12. https://doi.org/10.56294/mr202212. DOI: https://doi.org/10.56294/mr202212

67. Suárez NH, Gonzalez BF, Alemán RL, Batista IIT, Sánchez MS, Miranda AG. Regularidades de superación profesional sobre Neumonía Adquirida en la Comunidad para docentes de Medicina Interna. Salud, Ciencia y Tecnología - Serie de Conferencias 2022;1:297‑297. https://doi.org/10.56294/sctconf2022297. DOI: https://doi.org/10.56294/sctconf2022297

68. Torreblanca EAM, García MB. Proposal of an instructional design on linking the use of Wayuu myths and legends supported by multimedia applications to strengthen reading and writing skills. Metaverse Basic and Applied Research 2022;1:10‑10. https://doi.org/10.56294/mr202210. DOI: https://doi.org/10.56294/mr202210

69. Trujillo DM, Argos C de la CZ, Izquierdo AIV, Mesa IG, Zamora AL. Caracterización de la capacidad funcional en Adultos Mayores. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2022;2:17‑17. https://doi.org/10.56294/ri202217. DOI: https://doi.org/10.56294/ri202217

70. Yu, X. et al. (2022) ‘A systematic survey of deep learning in breast cancer’, International Journal of Intelligent Systems, 37(1), pp. 152–216. Available at: https://doi.org/10.1002/INT.22622. DOI: https://doi.org/10.1002/int.22622

Downloads

Published

2022-09-24

How to Cite

1.
Aviles-Yataco W, Meneses-Claudio B. Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2022 Sep. 24 [cited 2025 Jul. 7];1:3. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/3