Deep learning techniques for breast mass malignancy classification on digital mammography

Authors

DOI:

https://doi.org/10.56294/sctconf2025669

Keywords:

mammography, CLAHE, mean blur, convolutional neural networks, malignancy tumor classification

Abstract

Introduction: Breast cancer is one of the most common type of cancer with a high mortality rate. Mammography is widely used to identify breast cancer. Computer Aided Diagnosis systems are used for automatic detection of breast lesions. 
Methods: We propose and evaluate a deep learning model, called VGG16-C300, for breast mass malignancy classification. CBIS-DDSM dataset was used for training and evaluation. Image contrast enhancement methods like CLAHE and Mean Blur where previously applied to regions of interests. 
Results: The trained model achieved and area under the curve of 0.80, after 10 iterations of a 5-fold Cross-Validation. 
Conclusions: VGG16-C300 could be used as a component in a computer-aided diagnosis system for breast cancer detection

References

1. Dirección Nacional de Registros Médicos y Estadísticas de Salud. Anuario Estadístico de Salud 2019 [Internet]. La Habana: Ministerio de Salud Pública de Cuba; 2020. Available from: https://files.sld.cu/bvscuba/files/2021/08/Anuario-Estadistico-Español-2020-Definitivo.pdf

2. Akselrod-Ballin A, Chorev M, Shoshan Y, Spiro A, Hazan A, Melamed R, et al. Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms. Radiology [Internet] 2019;292(2):331–42. Available from: http://pubs.rsna.org/doi/10.1148/radiol.2019182622

3. Rangayyan RM. Biomedical image analysis [Internet]. Calgary, Alberta, Canada: CRC Press; 2004. Available from: https://www.routledge.com/Biomedical-Image-Analysis/Rangayyan/p/book/9780849396953?srsltid=AfmBOor_VKv0-EBU0xaPSbkHWeBAhwfgGQanXO0wkrusw5QsRh5QKMrF

4. Hai J, Tan H, Chen J, Wu M, Qiao K, Xu J, et al. Multi-level features combined end-to-end learning for automated pathological grading of breast cancer on digital mammograms. Comput Med Imaging Graph [Internet] 2019;71:58–66. Available from: https://doi.org/10.1016/j.compmedimag.2018.10.008

5. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature [Internet] 2020;577(7788):89–94. Available from: https://www.nature.com/articles/s41586-019-1799-6

6. Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with Deep Learning. CoRR [Internet] 2017;abs/1707.0. Available from: http://arxiv.org/abs/1707.08401

7. Touahri R, AzizI N, Hammami NE, Aldwairi M, Benaida F. Automated Breast Tumor Diagnosis Using Local Binary Patterns (LBP) Based on Deep Learning Classification [Internet]. In: 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE; 2019. 1–5.Available from: https://ieeexplore.ieee.org/document/8716428/

8. Jiang F, Liu H, Yu S, Xie Y. Breast mass lesion classification in mammograms by transfer learning [Internet]. In: Proceedings of the 5th International Conference on Bioinformatics and Computational Biology. New York, NY, USA: ACM; 2017. 59–62.Available from: https://dl.acm.org/doi/10.1145/3035012.3035022

9. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis [Internet] 2015;115(3):211–52. Available from: http://link.springer.com/10.1007/s11263-015-0816-y

10. Halling-Brown MD, Warren LM, Ward D, Lewis E, Mackenzie A, Wallis MG, et al. OPTIMAM Mammography Image Database: A Large-Scale Resource of Mammography Images and Clinical Data. Radiol Artif Intell [Internet] 2021;3(1):e200103. Available from: http://pubs.rsna.org/doi/10.1148/ryai.2020200103

11. Elangovan P, Hadjipanteli A, Mackenzie A, Dance DR, Young KC, Wells K. OPTIMAM Image Simulation Toolbox - Recent Developments and Ongoing Studies [Internet]. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2016. 668–75.Available from: http://link.springer.com/10.1007/978-3-319-41546-8_83

12. Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL. A curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data [Internet] 2017;4(1):170177. Available from: https://www.nature.com/articles/sdata2017177

13. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object Detection. IEEE Trans Pattern Anal Mach Intell [Internet] 2020;42(2):318–27. Available from: https://ieeexplore.ieee.org/document/8417976/

14. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition [Internet]. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2016. 770–8.Available from: http://ieeexplore.ieee.org/document/7780459/

15. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks [Internet]. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2017. 2261–9.Available from: https://ieeexplore.ieee.org/document/8099726/

16. Georgieva V, Kountchev R, Draganov I. An Adaptive Enhancement of X-Ray Images [Internet]. In: Kountchev R, Iantovics B, editors. Advances in Intelligent Analysis of Medical Data and Decision Support Systems. Heidelberg: Springer International Publishing; 2013. 79–88.Available from: https://link.springer.com/10.1007/978-3-319-00029-9_7

17. Gonzalez RC, Woods RE. Digital Image Processing [Internet]. 4th ed. New York: Pearson; 2018. Available from: https://elibrary.pearson.de/book/99.150005/9781292223070

18. Liu S, Deng W. Very deep convolutional neural network based image classification using small training sample size [Internet]. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). IEEE; 2015. 730–4.Available from: http://ieeexplore.ieee.org/document/7486599/

19. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv Prepr arXiv14091556 [Internet] 2014;Available from: https://arxiv.org/abs/1409.1556

20. Lu HC, Loh EW, Huang SC. The Classification of Mammogram Using Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer Detection [Internet]. In: 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE; 2019. 9–12.Available from: https://ieeexplore.ieee.org/document/8837000/

21. Chollet F. Deep Learning with Python [Internet]. USA: Manning Publications Co.; 2017. Available from: https://www.manning.com/books/deep-learning-with-python

22. Van Rossum G, Drake FL. Python 3 Reference Manual [Internet]. Scotts Valley, CA: CreateSpace; 2009. Available from: https://dl.acm.org/doi/book/10.5555/1593511

23. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale machine learning [Internet]. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016. 2016. 265–83.Available from: https://dl.acm.org/doi/10.5555/3026877.3026899

24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res [Internet] 2011;12:2825–30. Available from: https://www.jmlr.org/papers/v12/pedregosa11a.html

25. Kaehler A, Bradski G. Learning OpenCV 3 [Internet]. O’Reilly Media, Inc.; 2016. Available from: https://www.oreilly.com/library/view/learning-opencv-3/9781491937983/

Downloads

Published

2025-01-01

How to Cite

1.
Coto Santiesteban A, Garzón Cutiño L, Valdés Santiago D. Deep learning techniques for breast mass malignancy classification on digital mammography. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2025 Jan. 1 [cited 2025 Jan. 13];4:669. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/669