Internal and external factors driving the evolution of the Bacterial Resistance Landscape
DOI:
https://doi.org/10.56294/sctconf2024.104Keywords:
Resistance, diagnosis, treatment, SWOTAbstract
Bacterial resistance to antibiotics is a growing public health challenge, influenced by mechanisms such as the production of hydrolytic enzymes, modification of active sites and decreased permeability in bacteria. Based on a SWOT analysis, significant internal deficiencies in the training of health professionals and the lack of adequate technologies to diagnose resistance were identified, contributing to the prevalence of resistant infections. Additionally, lax policies on antibiotic use exacerbate the problem. On the other hand, there are strengths such as the presence of advanced surveillance and diagnostic systems, along with educational initiatives and laboratories dedicated to research. Opportunities include access to rapid diagnostic technologies and research funding that can accelerate the response to this crisis. However, threats such as self-medication and the use of counterfeit antibiotics persist due to distribution problems. It was concluded that it is crucial to implement strategies that enhance continuous training, promote the use of advanced diagnostic technologies, and strengthen research for the development of new treatments. The success of these strategies will depend on a combination of educational policies, technological improvements and stricter controls on the distribution of antibiotics to minimize the risks associated with bacterial resistance
References
1. Baquero F, Martinez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin Microbiol Rev [Internet]. 2021;34(4):e00050-19. Available from: https://journals.asm.org/doi/full/10.1128/cmr.00050-19
2. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Virulence Mech Bact Pathog. 2016;(6):481–511.
3. Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, et al. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. Sci Total Environ [Internet]. 2023 Feb;860:160461. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0048969722075635
4. Barros G, Melo C, Oliveira M, Silva J, Santos R, Oliveira S. Impacto financiero de la terapia con antibióticos en la resistencia a múltiples fármacos bacterianos en un hospital de emergencia en Pernambuco, Brasil. Ars Pharm [Internet]. 2020;61(2):121–6. Available from: https://scielo.isciii.es/scielo.php?pid=S2340-98942020000200006&script=sci_arttext
5. Varela MF, Stephen J, Lekshmi M, Ojha M, Wenzel N, Sanford LM, et al. Bacterial resistance to antimicrobial agents. Antibiotics [Internet]. 2021;10(5):593. Available from: https://www.mdpi.com/2079-6382/10/5/593
6. Fica A. Resistencia antibiótica en bacilos gram negativos, cocáceas gram positivas y anaerobios. implicancias terapéuticasantibiotic resistance among gramnegative bacilli, grampositive bacteria and anaerobes. therapeutic implications. Rev Médica Clínica Las Condes [Internet]. 2014;25(3):432–44. Available from: https://www.sciencedirect.com/science/article/pii/S0716864014700604
7. Esperanza C, López C. Grao en Bioloxía Memoria do Traballo de Fin de Grao Claudia Esperanza Corredoira López. 2021;2020–1.
8. Vázquez-Cabrera N, Espinosa-Márquez A, Cedillo-Ramírez ML. Historical evolution of World Health Organization guidelines on antimicrobial resistance. Rev Panam Salud Publica/Pan Am J Public Heal [Internet]. 2023;47:1–10. Available from: https://europepmc.org/article/med/36843661
9. Zumbado Morales R, Barquero Montero A, Hidalgo Mora O. Resistencia a los antibióticos: Una Revisión Bibliográfica. Rev Cienc y Salud Integr Conoc [Internet]. 2022;6(3):145–53. Available from: https://www.revistacienciaysalud.ac.cr/ojs/index.php/cienciaysalud/article/view/500
10. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran T Bin, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health [Internet]. 2021;14(12):1750–66. Available from: https://www.sciencedirect.com/science/article/pii/S1876034121003403
11. Vlados C. On a correlative and evolutionary SWOT analysis. J Strateg Manag [Internet]. 2019;12(3):347–63. Available from: https://www.emerald.com/insight/content/doi/10.1108/JSMA-02-2019-0026/full/html?utm_campaign=Emerald_Strategy_PPV_November22_RoN
12. Mata Martínez, L. F, Herrera-Viedma E. An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Trans fuzzy Syst [Internet]. 2009;17(2):279–90. Available from: https://ieeexplore.ieee.org/abstract/document/4768682/
13. Goyes-Baca MJ, Sacon-Espinoza MR, Poveda-Paredes FX. Manejo del sistema de salud de Ecuador frente a la resistencia antimicrobiana. Rev Inf Cient [Internet]. 2023;102(0). Disponible en: https://revinfcientifica.sld.cu/index.php/ric/article/view/4048
14. Guevara Valtier MC, Navarro Rodríguez DC, Rueda Sánchez CB, Quintana Lagunas R, Rodríguez Romero YE, Paz Morales M de LÁ. Simulación Clínica y Aprendizaje Basado en Problemas en estudiantes de Enfermería: Propuesta de factibilidad de intervención. Dilemas contemp: educ política valores [Internet]. 2024 [cited 2024 Sep 14]; Available from: https://dilemascontemporaneoseducacionpoliticayvalores.com/index.php/dilemas/article/view/4306.
Published
Issue
Section
License
Copyright (c) 2024 Mónica Viviana Moscoso Silva, Washington Paúl Culqui Molina, Heidy Elena Chacón Llagla, Steven Luis Landeta Valladares (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.