Design of a Classifier model for Heart Disease Prediction using normalized graph model
DOI:
https://doi.org/10.56294/sctconf2024653Keywords:
Heart Disease, Classification, Prediction, Machine Learning, Hyper-ParametersAbstract
Heart disease is an illness that influences enormous people worldwide. Particularly in cardiology, heart disease diagnosis and treatment need to happen quickly and precisely. Here, a machine learning-based (ML) approach is anticipated for diagnosing a cardiac disease that is both effective and accurate. The system was developed using standard feature selection algorithms for removing unnecessary and redundant features. Here, a novel normalized graph model (n – GM) is used for prediction. To address the issue of feature selection, this work considers the significant information feature selection approach. To improve classification accuracy and shorten the time it takes to process classifications, feature selection techniques are utilized. Furthermore, the hyper-parameters and learning techniques for model evaluation have been accomplished using cross-validation. The performance is evaluated with various metrics. The performance is evaluated on the features chosen via features representation. The outcomes demonstrate that the suggested (n – GM) gives 98 % accuracy for modeling an intelligent system to detect heart disease using a classifier support vector machine
References
1. Jagtap, P. Malewadkar, O. Baswat, H. Rambade, Heart disease prediction using machine learning. Int. J. Res. Eng. Sci. Manage. 2(2) (2019)
2. Amado DPA, Diaz FAC, Pantoja R del PC, Sanchez LMB. Benefits of Artificial Intelligence and its Innovation in Organizations. AG Multidisciplinar 2023;1:15-15. https://doi.org/10.62486/agmu202315.
3. Narmadha P. Sherubha, M. Banu chitra, “Multi class feature selection algorithm for breast cancer detection”, International journal of pure and applied mathematics, pp. 301-305, 2018.
4. Batista-Mariño Y, Gutiérrez-Cristo HG, Díaz-Vidal M, Peña-Marrero Y, Mulet-Labrada S, Díaz LE-R. Behavior of stomatological emergencies of dental origin. Mario Pozo Ochoa Stomatology Clinic. 2022-2023. AG Odontologia 2023;1:6-6. https://doi.org/10.62486/agodonto20236.
5. Beyene C, Kamat P. Survey on Prediction and Analysis the Occurrence of Heart Disease Using Data Mining Techniques. International Journal of Pure and Applied Mathematics. 2018;118(8):165–74.
6. BP Sreeja, S Manoj Kumar, P Sherubha, SP Sasirekha, “Crop monitoring using wireless sensor networks”, Materials Today: Proceedings, 2020.
7. Caero L, Libertelli J. Relationship between Vigorexia, steroid use, and recreational bodybuilding practice and the effects of the closure of training centers due to the Covid-19 pandemic in young people in Argentina. AG Salud 2023;1:18-18. https://doi.org/10.62486/agsalud202318.
8. Cavalcante L de FB. Feminicide from the perspective of the cultural mediation of information. Advanced Notes in Information Science 2023;5:24-48. https://doi.org/10.47909/978-9916-9906-9-8.72.
9. Chalan SAL, Hinojosa BLA, Claudio BAM, Mendoza OAV. Quality of service and customer satisfaction in the beauty industry in the district of Los Olivos. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:5-5. https://doi.org/10.56294/piii20235.
10. Chávez JJB, Trujillo REO, Hinojosa BLA, Claudio BAM, Mendoza OAV. Influencer marketing and the buying decision of generation «Z» consumers in beauty and personal care companies. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:7-7. https://doi.org/10.56294/piii20237.
11. Diaz DPM. Staff turnover in companies. AG Managment 2023;1:16-16. https://doi.org/10.62486/agma202316.
12. Espinosa JCG, Sánchez LML, Pereira MAF. Benefits of Artificial Intelligence in human talent management. AG Multidisciplinar 2023;1:14-14. https://doi.org/10.62486/agmu202314.
13. Figueredo-Rigores A, Blanco-Romero L, Llevat-Romero D. Systemic view of periodontal diseases. AG Odontologia 2023;1:14-14. https://doi.org/10.62486/agodonto202314.
14. G. Jignesh Chowdary, G. Suganya, M. Premalatha, Effective prediction of cardiovascular disease using cluster of machine learning algorithms. J. Critical Rev. 7(18), 2192–2201 (2020). ISSN-2394–5125
15. Goel S, Deep A, Srivastava S, Tripathi A, "Comparative Analysis of various Techniques for Heart Disease Prediction", Information Systems and Computer Networks (ISCON) 2019 4th International Conference on. 2019. p. 88–94.
16. Gonzalez-Argote J, Castillo-González W. Productivity and Impact of the Scientific Production on Human-Computer Interaction in Scopus from 2018 to 2022. AG Multidisciplinar 2023;1:10-10. https://doi.org/10.62486/agmu202310.
17. Hernández-Flórez N. Breaking stereotypes: “a philosophical reflection on women criminals from a gender perspective". AG Salud 2023;1:17-17. https://doi.org/10.62486/agsalud202317.
18. Hinojosa BLA, Mendoza OAV. Perceptions on the use of Digital Marketing of the micro-entrepreneurs of the textile sector of the Blue Gallery in the emporium of Gamarra. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:9-9. https://doi.org/10.56294/piii20239.
19. Jabbar MA, Deekshatulu BL, Chandra P. "Alternating decision trees for early diagnosis of heart disease," International Conference on Circuits, Communication, Control and Computing, Bangalore. 2014. p. 322–328.
20. Jabbar MA, Deekshatulu BL, Chandra P. Classification of Heart Disease using Artificial Neural Network and Feature Subset Selection. Global journal of computer science and technology. 2013.
21. Jenzi, I., Priyanka, P., Alli, P.: A reliable classifier model using data mining approach for heart disease prediction. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 20–24 (2013)
22. Kalaiselvi, C.: Diagnosing of heart diseases using average k-nearest neighbor algorithm of data mining. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 3099–3103. IEEE (2016)
23. Karayılan T, Kılıç O, "Prediction of heart disease using neural network", Computer Science and Engineering (UBMK) 2017 International Conference on, 2017. p. 719–723.
24. Karthiga A, Mary S, Yogasini M. Early Prediction of Heart Disease Using Decision Tree Algorithm. International Journal of Advanced Research in Basic Engineering Sciences and Technology. (IJARBEST) 2017.
25. Lamorú-Pardo AM, Álvarez-Romero Y, Rubio-Díaz D, González-Alvarez A, Pérez-Roque L, Vargas-Labrada LS. Dental caries, nutritional status and oral hygiene in schoolchildren, La Demajagua, 2022. AG Odontologia 2023;1:8-8. https://doi.org/10.62486/agodonto20238.
26. Ledesma-Céspedes N, Leyva-Samue L, Barrios-Ledesma L. Use of radiographs in endodontic treatments in pregnant women. AG Odontologia 2023;1:3-3. https://doi.org/10.62486/agodonto20233.
27. Lopez ACA. Contributions of John Calvin to education. A systematic review. AG Multidisciplinar 2023;1:11-11. https://doi.org/10.62486/agmu202311.
28. M. Marimuthu, M. Abinaya, K.S. Hariesh, K. Madhankumar, V. Pavithra, A review on heart disease prediction using machine learning and data analytics approach. Int. J. Comput. Appl. (0975-8887) 181(18) (2018)
29. Maamar Bougherara, Rafik Amara, Rebiha Kemcha, IAES International Journal of Robotics and Automation (IJRA), Vol. 12, No. 4, December 2023, pp. 394 – 404
30. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué RF. Older adult victims of violence. Satisfaction with health services in primary care. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:12-12. https://doi.org/10.56294/piii202312.
31. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué VMF. Characterization of legal drug use in older adult caregivers who are victims of violence. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:13-13. https://doi.org/10.56294/piii202313.
32. Masethe, H.D., Masethe, M.A.: Prediction of heart disease using classification algorithms. In: Proceedings of the world Congress on Engineering and Computer Science, vol. 2, pp. 22–24 (2014)
33. Moraes IB. Critical Analysis of Health Indicators in Primary Health Care: A Brazilian Perspective. AG Salud 2023;1:28-28. https://doi.org/10.62486/agsalud202328.
34. N. Rajesh, T. Maneesha, S. Hafeez, H. Krishna, Prediction of heart disease using machine learning algorithms. Int. J. Eng. Technol. 7(2.32), 363–366 (2018).
35. Ogolodom MP, Ochong AD, Egop EB, Jeremiah CU, Madume AK, Nyenke CU, et al. Knowledge and perception of healthcare workers towards the adoption of artificial intelligence in healthcare service delivery in Nigeria. AG Salud 2023;1:16-16. https://doi.org/10.62486/agsalud202316.
36. Pahwa K, Kumar R. "Prediction of heart disease using hybrid technique for selecting features," 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura. 2017. p. 500–504.
37. Palaniappan S, Awang R. "Intelligent heart disease prediction system using data mining techniques," 2008 IEEE/ACS International Conference on Computer Systems and Applications, Doha, 2008.
38. Patel, S.B., Yadav, P.K., Shukla, D.: Predict the diagnosis of heart disease patients using classification mining techniques. IOSR J. Agric. Vet. Sci. (IOSR-JAVS) 4(2), 61–64 (2013)
39. Peñaloza JEG, Bermúdez L marcela A, Calderón YMA. Perception of representativeness of the Assembly of Huila 2020-2023. AG Multidisciplinar 2023;1:13-13. https://doi.org/10.62486/agmu202313.
40. Pérez DQ, Palomo IQ, Santana YL, Rodríguez AC, Piñera YP. Predictive value of the neutrophil-lymphocyte index as a predictor of severity and death in patients treated for COVID-19. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:14-14. https://doi.org/10.56294/piii202314.
41. Prado JMK do, Sena PMB. Information science based on FEBAB’s census of Brazilian library science: postgraduate data. Advanced Notes in Information Science 2023;5:1-23. https://doi.org/10.47909/978-9916-9906-9-8.73.
42. Pupo-Martínez Y, Dalmau-Ramírez E, Meriño-Collazo L, Céspedes-Proenza I, Cruz-Sánchez A, Blanco-Romero L. Occlusal changes in primary dentition after treatment of dental interferences. AG Odontologia 2023;1:10-10. https://doi.org/10.62486/agodonto202310.
43. Quiroz FJR, Oncoy AWE. Resilience and life satisfaction in migrant university students residing in Lima. AG Salud 2023;1:9-9. https://doi.org/10.62486/agsalud20239.
44. Rahman M, Zahin MM, Islam L, "Effective Prediction On Heart Disease: Anticipating Heart Disease Using Data Mining Techniques", Smart Systems and Inventive Technology (ICSSIT) 2019 International Conference on. 2019. p. 536–541.
45. Rajathi S, Radhamani G. "Prediction and analysis of Rheumatic heart disease using kNN classification with ACO," 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE), Ernakulam. 2016. p. 68–73.
46. Raju, C., Philipsy, E., Chacko, S., Suresh, L.P., Rajan, S.D.: A survey on predicting heart disease using data mining techniques. In: 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 253–255. IEEE (2018)
47. Ramalingam V, Dandapath A, & Karthik Raja M. Heart disease prediction using machine learning techniques: a survey. International Journal of Engineering & Technology. 2018;7(2.8):684–687.
48. Roa BAV, Ortiz MAC, Cano CAG. Analysis of the simple tax regime in Colombia, case of night traders in the city of Florencia, Caquetá. AG Managment 2023;1:14-14. https://doi.org/10.62486/agma202314.
49. Rodríguez AL. Analysis of associative entrepreneurship as a territorial strategy in the municipality of Mesetas, Meta. AG Managment 2023;1:15-15. https://doi.org/10.62486/agma202315.
50. Rodríguez LPM, Sánchez PAS. Social appropriation of knowledge applying the knowledge management methodology. Case study: San Miguel de Sema, Boyacá. AG Managment 2023;1:13-13. https://doi.org/10.62486/agma202313.
51. S Rinesh, K Maheswari, B Arthi, P Sherubha, “Investigations on brain tumor classification using hybrid machine learning algorithms”, Journal of Healthcare Engineering, 2022.
52. S. Sharma, M. Parmar, Heart diseases prediction using deep learning neural network model. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9(3) (2020). ISSN 2278-3075
53. S.N. Pasha, D. Ramesh, S. Mohmmad, A. Harshavardhan, Shabana, Cardiovascular disease prediction using deep learning techniques. IOP Conf. Ser.: Mater. Sci. Eng. 981, 022006 (2020)
54. Santhana Krishnan J., Geetha S., "Prediction of Heart Disease Using Machine Learning Algorithms.", Innovations in Information and Communication Technology (ICIICT) 2019 1st International Conference on. 2019. p. 1–5.
55. Serra S, Revez J. As bibliotecas públicas na inclusão social de migrantes forçados na Área Metropolitana de Lisboa. Advanced Notes in Information Science 2023;5:49-99. https://doi.org/10.47909/978-9916-9906-9-8.50.
56. Solano AVC, Arboleda LDC, García CCC, Dominguez CDC. Benefits of artificial intelligence in companies. AG Managment 2023;1:17-17. https://doi.org/10.62486/agma202317.
57. T.K. Sajja, H.K. Kalluri, A deep learning method for prediction of cardiovascular disease using convolutional neutral network. Int. Inf. Eng. Technol. Assoc. 34(5), 601–606 (2020)
58. Thomas J, Princy RT. Human heart disease prediction system using data mining techniques. 2016 International Conference on Circuit, Power, and Computing Technologies (ICCPCT). 2016.
59. Venkatalakshmi, B., Shivsankar, M.: Heart disease diagnosis using predictive data mining. Int. J. Innov. Res. Sci. Eng. Technol. 3(3), 1873–1877 (2014)
60. Xu S, Zhang Z, Wang D, Hu J, Duan X, Zhu T. "Cardiovascular risk prediction method based on CFS subset evaluation and random forest classification framework," 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing. 2017.
61. Yi-Chang Wu, Yao-Cheng Liu, Ru-Yi Huang, The use of artificial intelligence in interrogation: lies and truth”, IAES International Journal of Robotics and Automation (IJRA), Vol. 12, No. 4, December, 2023, pp. 332~340
Published
Issue
Section
License
Copyright (c) 2024 B. Karthiga, Sathya Selvaraj Sinnasamy, V.C. Bharathi, K. Azarudeen, Sherubha. P (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.