An Energy-Efficient Cluster Head Selection and Secure Data Transmission in WSN using Spider Monkey Optimized Algorithm and Hybrid Cryptographic with Security

Authors

  • M. Yuvaraja Department of ECE, P.A. College of Engineering and Technology. Pollachi, India Author
  • S. Sureshkumar Department of Computer Science and Engineering, P. A. College of Engineering and Technology. Pollachi, India Author
  • S. Joseph James Department of Computational Intelligence, Faculty of Engineering and Technology. SRM Institute of Science and Technology. Kattankulathur.India Author
  • S. Thillaikkarasi Department of ECE, Sri Eshwar College of Engineering. Coimbatore, India Author

DOI:

https://doi.org/10.56294/sctconf2024650

Keywords:

Wireless Sensor Network (WSN), Spider Monkey Optimised Fuzzy C-Means Algorithm (SMOFCM), Cluster Head (CH), Advanced Encryption Standard (AES), Hybrid Cryptographic, Rivest-Shamir-Adleman (RSA)

Abstract

To conserve energy in wireless sensor networks, clustering is the well-known strategies. However, choosing a cluster head that is energy efficient is crucial for the best clustering. Because data packets must be transmitted between cluster members and the sink node, improper cluster head selection (CHs) uses more energy than other sensor nodes. As a result, it lowers the network's performance and lifespan. Due to the requirement that this network implement appropriate security measures to guarantee secure communication. This paper  provides a novel cluster head selection technique that addresses issues of  networks’ lives and  energy usages using Spider Monkey Optimised Fuzzy C-Means Algorithm (SMOFCM). The CH is chosen using the Spider Monkey Optimisation method in the proposed SMOFCM approach, which builds on the Fuzzy C-means clustering framework. The hybrid cryptographic technique is appropriate for WSN for safe data transmission because it can address sensor challenges such processing power, storage capability, and energy. The Rivest-Shamir-Adleman (RSA), advanced encryption standards (AES), and the suggested algorithm are all used at various stages. Because asymmetric key cryptography makes key management simpler but symmetric key cryptography offers a high level of security. The AES algorithm has been created for phase 1. Phase 2 employed RSA, and all phases were carried out concurrently. According to the simulation results, it reduces energy use, lengthens the network's lifespan, and offers faster encryption, decryption, and execution times for secure data transmission

References

1. G. Khan, S. Basharat and M. U. Riaz, “Analysis of asymmetric cryptography in information security based on computational study to ensure confidentiality during information exchange,” International Journal of Scientific & Engineering Research, vol.9, no.11, pp.992-999, 2018.

2. H. Jabbar and I. S. Alshawi, “Spider monkey optimization routing protocol for wireless sensor networks,” International Journal of Electrical & Computer Engineering, vol.11, no.3,pp.2432-2442, 2021.

3. Mahboub and M. Arioua, “Energy-efficient hybrid k-means algorithm for clustered wireless sensor networks,” International Journal of Electrical and Computer Engineering, vol.7, no.4, pp.2054-2060, 2017.

4. S. Tushar and A. Mishra, “Cryptographic Algorithm for Enhancing Data Security: A Theoretical Approach,” International Journal of Engineering Research & Technology, vol.10, no.03, pp.274-277, 2021.

5. Amado DPA, Diaz FAC, Pantoja R del PC, Sanchez LMB. Benefits of Artificial Intelligence and its Innovation in Organizations. AG Multidisciplinar 2023;1:15-15. https://doi.org/10.62486/agmu202315.

6. Bhushan, C. Sahoo, P. Sinha and A. Khamparia, “Unification of Blockchain and Internet of Things (BIoT): requirements, working model, challenges and future directions,” Wireless Networks, vol.27, no.1, pp.55- 90, 2021.

7. Batista-Mariño Y, Gutiérrez-Cristo HG, Díaz-Vidal M, Peña-Marrero Y, Mulet-Labrada S, Díaz LE-R. Behavior of stomatological emergencies of dental origin. Mario Pozo Ochoa Stomatology Clinic. 2022-2023. AG Odontologia 2023;1:6-6. https://doi.org/10.62486/agodonto20236.

8. Caero L, Libertelli J. Relationship between Vigorexia, steroid use, and recreational bodybuilding practice and the effects of the closure of training centers due to the Covid-19 pandemic in young people in Argentina. AG Salud 2023;1:18-18. https://doi.org/10.62486/agsalud202318.

9. Cavalcante L de FB. Feminicide from the perspective of the cultural mediation of information. Advanced Notes in Information Science 2023;5:24-48. https://doi.org/10.47909/978-9916-9906-9-8.72.

10. Chalan SAL, Hinojosa BLA, Claudio BAM, Mendoza OAV. Quality of service and customer satisfaction in the beauty industry in the district of Los Olivos. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:5-5. https://doi.org/10.56294/piii20235.

11. Chávez JJB, Trujillo REO, Hinojosa BLA, Claudio BAM, Mendoza OAV. Influencer marketing and the buying decision of generation «Z» consumers in beauty and personal care companies. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:7-7. https://doi.org/10.56294/piii20237.

12. Paulraj, R. Lavanya, T. Jayasudha, M. I. Niranjana, T. Daniyaand F. D. Shadrach, “Blockchain-based Wireless Sensor Network Security Through Authentication and Cluster Head Selection,” In 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS, 2023, pp. 1-5.

13. Samiayya, S. Radhika and A. Chandrasekar, “An optimal model for enhancing network lifetime and cluster head selection using hybrid snake whale optimization,” Peer-to-Peer Networking and Applications, vol.16, no.4, pp.1959-1974, 2023.

14. Diaz DPM. Staff turnover in companies. AG Managment 2023;1:16-16. https://doi.org/10.62486/agma202316.

15. Espinosa JCG, Sánchez LML, Pereira MAF. Benefits of Artificial Intelligence in human talent management. AG Multidisciplinar 2023;1:14-14. https://doi.org/10.62486/agmu202314.

16. Figueredo-Rigores A, Blanco-Romero L, Llevat-Romero D. Systemic view of periodontal diseases. AG Odontologia 2023;1:14-14. https://doi.org/10.62486/agodonto202314.

17. Gonzalez-Argote J, Castillo-González W. Productivity and Impact of the Scientific Production on Human-Computer Interaction in Scopus from 2018 to 2022. AG Multidisciplinar 2023;1:10-10. https://doi.org/10.62486/agmu202310.

18. Hernández-Flórez N. Breaking stereotypes: “a philosophical reflection on women criminals from a gender perspective". AG Salud 2023;1:17-17. https://doi.org/10.62486/agsalud202317.

19. Hinojosa BLA, Mendoza OAV. Perceptions on the use of Digital Marketing of the micro-entrepreneurs of the textile sector of the Blue Gallery in the emporium of Gamarra. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:9-9. https://doi.org/10.56294/piii20239.

20. J. C. Bezdek, R. Ehrlich and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Computers & geosciences, vol.10, no.2-3, pp.191-203, 1984.

21. J. Uthayakumar, T. Vengattaraman and P. Dhavachelvan, “A new lossless neighborhood indexing sequence (NIS) algorithm for data compression in wireless sensor networks,” Ad Hoc Networks, vol.83, pp. 149- 157, 2019.

22. K. Vanitha, K. Anitha, A. M. Z. Rahaman and M. M. Musthafa, “Analysis of Cryptographic Techniques in Network Security,” Journal of Applied Science and Computations, vol.5, no.8, pp.155-163, 2018.

23. Lamorú-Pardo AM, Álvarez-Romero Y, Rubio-Díaz D, González-Alvarez A, Pérez-Roque L, Vargas-Labrada LS. Dental caries, nutritional status and oral hygiene in schoolchildren, La Demajagua, 2022. AG Odontologia 2023;1:8-8. https://doi.org/10.62486/agodonto20238.

24. Ledesma-Céspedes N, Leyva-Samue L, Barrios-Ledesma L. Use of radiographs in endodontic treatments in pregnant women. AG Odontologia 2023;1:3-3. https://doi.org/10.62486/agodonto20233.

25. Lopez ACA. Contributions of John Calvin to education. A systematic review. AG Multidisciplinar 2023;1:11-11. https://doi.org/10.62486/agmu202311.

26. M. Al-Hawawreh, I. Elgendi and K. Munasinghe, “An Online Model to Minimize Energy Consumption of IoT sensors in Smart Cities,” IEEE Sensors Journal, vol.22, no.20, pp.19524-19532, 2022.

27. M. P. Gharat and D. Motawani, “Overview on Symmetric Key Encryption Algorithms,” International Journal of Engineering Research and Applications, vol.4, no.9, pp.123-126, 2014.

28. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué RF. Older adult victims of violence. Satisfaction with health services in primary care. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:12-12. https://doi.org/10.56294/piii202312.

29. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué VMF. Characterization of legal drug use in older adult caregivers who are victims of violence. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:13-13. https://doi.org/10.56294/piii202313.

30. Moraes IB. Critical Analysis of Health Indicators in Primary Health Care: A Brazilian Perspective. AG Salud 2023;1:28-28. https://doi.org/10.62486/agsalud202328.

31. N. Mittal and U. Singh, “Distance-based residual energy-efficient stable election protocol for WSNs,” Arabian Journal for Science and Engineering, vol.40, pp. 1637-1646, 2015.

32. N. Mittal, U. Singh, R. Salgotra and B. S. Sohi, “A boolean spider monkey optimization-based energy efficient clustering approach for WSNs,”Wireless Networks, vol.24, pp.2093-2109, 2018.

33. N. Vidhya, V. Seethalakshmi, R. Monisha, J. Dhanasekar, V. Gurunathan and C. Rajanandhini, “Coherent Data Transmission Using Multiplexing for a DWDM Communication System,” In 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), 2022, pp. 1-4.

34. Ogolodom MP, Ochong AD, Egop EB, Jeremiah CU, Madume AK, Nyenke CU, et al. Knowledge and perception of healthcare workers towards the adoption of artificial intelligence in healthcare service delivery in Nigeria. AG Salud 2023;1:16-16. https://doi.org/10.62486/agsalud202316.

35. Peñaloza JEG, Bermúdez L marcela A, Calderón YMA. Perception of representativeness of the Assembly of Huila 2020-2023. AG Multidisciplinar 2023;1:13-13. https://doi.org/10.62486/agmu202313.

36. Pérez DQ, Palomo IQ, Santana YL, Rodríguez AC, Piñera YP. Predictive value of the neutrophil-lymphocyte index as a predictor of severity and death in patients treated for COVID-19. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:14-14. https://doi.org/10.56294/piii202314.

37. Prado JMK do, Sena PMB. Information science based on FEBAB’s census of Brazilian library science: postgraduate data. Advanced Notes in Information Science 2023;5:1-23. https://doi.org/10.47909/978-9916-9906-9-8.73.

38. Pupo-Martínez Y, Dalmau-Ramírez E, Meriño-Collazo L, Céspedes-Proenza I, Cruz-Sánchez A, Blanco-Romero L. Occlusal changes in primary dentition after treatment of dental interferences. AG Odontologia 2023;1:10-10. https://doi.org/10.62486/agodonto202310.

39. Quiroz FJR, Oncoy AWE. Resilience and life satisfaction in migrant university students residing in Lima. AG Salud 2023;1:9-9. https://doi.org/10.62486/agsalud20239.

40. Roa BAV, Ortiz MAC, Cano CAG. Analysis of the simple tax regime in Colombia, case of night traders in the city of Florencia, Caquetá. AG Managment 2023;1:14-14. https://doi.org/10.62486/agma202314.

41. Rodríguez AL. Analysis of associative entrepreneurship as a territorial strategy in the municipality of Mesetas, Meta. AG Managment 2023;1:15-15. https://doi.org/10.62486/agma202315.

42. Rodríguez LPM, Sánchez PAS. Social appropriation of knowledge applying the knowledge management methodology. Case study: San Miguel de Sema, Boyacá. AG Managment 2023;1:13-13. https://doi.org/10.62486/agma202313.

43. S. Kaviarasan and R. Srinivasan, “A Novel Spider Monkey Optimized Fuzzy C-Means Algorithm (SMOFCM) for Energy-Based Cluster-Head Selection in WSNs,” International Journal of Electrical and Electronics Research (IJEER), vol.11, no.1, pp.169-175, 2023.

44. S. Mody, S. Mirkar, R. Ghag and P. Kotecha, “Cluster Head Selection Algorithm for Wireless Sensor Networks Using Machine Learning,” In 2021 International Conference on Computational Performance Evaluation (ComPE), 2021, pp. 445-450.

45. S. Sultana, G. Ghinita, E. Bertino and M. Shehab, “A Lightweight Secure Scheme for Detecting Provenance Forgery and Packet Drop Attacks in Wireless Sensor Networks,” IEEE Transactions On Depedable And Secure Computing, vol. 6, no. 1, pp. 1-14, 2015.

46. S. Urooj, S. Lata, S. Ahmad, S. Mehfuz and S. Kalathil, “Cryptographic Data Security for Reliable Wireless Sensor Network,” Alexandria Engineering Journal, vol.72, pp.37-50, 2023.

47. Serra S, Revez J. As bibliotecas públicas na inclusão social de migrantes forçados na Área Metropolitana de Lisboa. Advanced Notes in Information Science 2023;5:49-99. https://doi.org/10.47909/978-9916-9906-9-8.50.

48. Solano AVC, Arboleda LDC, García CCC, Dominguez CDC. Benefits of artificial intelligence in companies. AG Managment 2023;1:17-17. https://doi.org/10.62486/agma202317.

49. T. Alam, “Cloud-based IoT applications and their roles in smart cities,” Smart Cities, vol.4, no.3, pp.1196-1219, 2021.

50. T. Sampradeeprajand V. A. Devi, “A Hybrid Cryptography and End-to-end Security Model for Wireless Sensor Networks,” Research Square, pp.1-23, 2022.

51. V. Narayan, A. K. Danieland P. Chaturvedi, “FGWOA: An efficient heuristic for cluster head selection in WSN using fuzzy based grey wolf optimization algorithm,” Research Square, pp.1-16, 2022

Downloads

Published

2024-03-10

How to Cite

1.
Yuvaraja M, Sureshkumar S, James SJ, Thillaikkarasi S. An Energy-Efficient Cluster Head Selection and Secure Data Transmission in WSN using Spider Monkey Optimized Algorithm and Hybrid Cryptographic with Security. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Mar. 10 [cited 2024 Dec. 12];3:650. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1068