An efficient fake news classification model based on ensemble deep learning techniques

Authors

  • R. Uma Maheswari Department of Computer Science, Bishop Appasamy College of Arts and Science. Coimbatore, Tamil Nadu 641018, India Author
  • N. Sudha Department of Computer Science, Bishop Appasamy College of Arts and Science. Coimbatore, Tamil Nadu 641018, India Author

DOI:

https://doi.org/10.56294/sctconf2024649

Keywords:

Fake News Classification, Whale Optimization Algorithm, Lexicon Model, Ensemble Learning

Abstract

The  availability  and expansion of  social media has made it  difficult to distinguish between fake and real news. Information falsification has exponentially increased as a result of how simple it is to spread information through sharing. Social media dependability is also under jeopardy due to the extensive dissemination of false information. Therefore, it has become a research problem to automatically validate information, specifically source, content, and publisher, to identify it as true or false. Despite its limitations, machine learning (ML) has been crucial in the categorization of information. Previous studies suggested three-step methods for categorising false information on social media. In the first step of the process, the data set is subjected to a number of pre-processing processes in order to transform unstructured data sets into structured data sets. The unknowable properties of fake news and the features are extracted by the Lexicon Model in the second stage. In the third stage of this research project, a feature selection method by WOA (Whale Optimization Algorithm) for weight value to tune the classification part. Finally, a Hybrid Classification model that is hybrid with a fuzzy based Convolutional Neural Network and kernel based support vector machine is constructed in order to identify the data pertaining to bogus news. However using single classifier for fake news detection produces the insufficient accuracy. To overcome this issue in this work introduced an improved model for fake news classification. To turn unstructured data sets into structured data sets, a variety of pre-processing operations are used on the data set in the initial phase of the procedure. The unknowable properties of fake news and the features are extracted by the Lexicon Model in the second stage. In the third stage of this research project, a feature selection method by COA (Coati Optimization Algorithm) for weight value to tune the classification part. Finally, an ensemble of RNN (Recurrent Neural Networks), VGG-16 and ResNet50.A classification model was developed to recognise bogus news information. Evaluate each fake news analysis' performance in terms of accuracy, precision, recall, and F1 score. The suggested model, out of all the methodologies taken into consideration in this study, provides the highest outcomes, according to experimental findings

References

1. Ahmad PN, Liu Y, Ali G, Wani MA, ElAffendi M. Robust Benchmark for Propagandist Text Detection and Mining High-Quality Data. Mathematics 2023;11. https://doi.org/10.3390/math11122668.

2. Alarfaj FK, Khan JA. Deep Dive into Fake News Detection: Feature-Centric Classification with Ensemble and Deep Learning Methods. Algorithms 2023;16. https://doi.org/10.3390/a16110507.

3. Ali AA, Latif S, Ghauri SA, Song O-Y, Abbasi AA, Malik AJ. Linguistic Features and Bi-LSTM for Identification of Fake News. Electronics (Switzerland) 2023;12. https://doi.org/10.3390/electronics12132942.

4. Ali AM, Ghaleb FA, Mohammed MS, Alsolami FJ, Khan AI. Web-Informed-Augmented Fake News Detection Model Using Stacked Layers of Convolutional Neural Network and Deep Autoencoder. Mathematics 2023;11. https://doi.org/10.3390/math11091992.

5. Ali H, Khan MS, AlGhadhban A, Alazmi M, Alzamil A, Al-utaibi K, et al. Con-Detect: Detecting adversarially perturbed natural language inputs to deep classifiers through holistic analysis. Computers and Security 2023;132. https://doi.org/10.1016/j.cose.2023.103367.

6. Almarashy AHJ, Feizi-Derakhshi M-R, Salehpour P. Enhancing Fake News Detection by Multi-Feature Classification. IEEE Access 2023;11:139601-13. https://doi.org/10.1109/ACCESS.2023.3339621.

7. Alotaibi W, Alomary F, Mokni R. COVID-19 vaccine rejection causes based on Twitter people’s opinions analysis using deep learning. Social Network Analysis and Mining 2023;13. https://doi.org/10.1007/s13278-023-01059-y.

8. Amado DPA, Diaz FAC, Pantoja R del PC, Sanchez LMB. Benefits of Artificial Intelligence and its Innovation in Organizations. AG Multidisciplinar 2023;1:15-15. https://doi.org/10.62486/agmu202315.

9. Andersen PD, Suhartono D. A Pre-trained Transformer-based Ensemble Model for Automated Indonesian Fake News Classification. International Journal of Intelligent Systems and Applications in Engineering 2023;11:361-7.

10. Assiri F, Himdi H. Comprehensive Study of Arabic Satirical Article Classification. Applied Sciences (Switzerland) 2023;13. https://doi.org/10.3390/app131910616.

11. Awajan A. ENHANCING ARABIC FAKE NEWS DETECTION FOR TWITTERS SOCIAL MEDIA PLATFORM USING SHALLOW LEARNING TECHNIQUES. Journal of Theoretical and Applied Information Technology 2023;101:1745-60.

12. Batista-Mariño Y, Gutiérrez-Cristo HG, Díaz-Vidal M, Peña-Marrero Y, Mulet-Labrada S, Díaz LE-R. Behavior of stomatological emergencies of dental origin. Mario Pozo Ochoa Stomatology Clinic. 2022-2023. AG Odontologia 2023;1:6-6. https://doi.org/10.62486/agodonto20236.

13. Bensouda N, Fkihi SE, Faizi R. A novel ensemble model for detecting fake news. IAES International Journal of Artificial Intelligence 2024;13:1160-71. https://doi.org/10.11591/ijai.v13.i1.pp1160-1171.

14. Caero L, Libertelli J. Relationship between Vigorexia, steroid use, and recreational bodybuilding practice and the effects of the closure of training centers due to the Covid-19 pandemic in young people in Argentina. AG Salud 2023;1:18-18. https://doi.org/10.62486/agsalud202318.

15. Cavalcante L de FB. Feminicide from the perspective of the cultural mediation of information. Advanced Notes in Information Science 2023;5:24-48. https://doi.org/10.47909/978-9916-9906-9-8.72.

16. Chalan SAL, Hinojosa BLA, Claudio BAM, Mendoza OAV. Quality of service and customer satisfaction in the beauty industry in the district of Los Olivos. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:5-5. https://doi.org/10.56294/piii20235.

17. Chaudhari D, Pawar AV. Empowering Propaganda Detection in Resource-Restraint Languages: A Transformer-Based Framework for Classifying Hindi News Articles. Big Data and Cognitive Computing 2023;7. https://doi.org/10.3390/bdcc7040175.

18. Chávez JJB, Trujillo REO, Hinojosa BLA, Claudio BAM, Mendoza OAV. Influencer marketing and the buying decision of generation «Z» consumers in beauty and personal care companies. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:7-7. https://doi.org/10.56294/piii20237.

19. Choudhry A, Khatri I, Jain M, Vishwakarma DK. An Emotion-Aware Multitask Approach to Fake News and Rumor Detection Using Transfer Learning. IEEE Transactions on Computational Social Systems 2024;11:588-99. https://doi.org/10.1109/TCSS.2022.3228312.

20. De Santis E, Martino A, Rizzi A. Human versus Machine Intelligence: Assessing Natural Language Generation Models through Complex Systems Theory. IEEE Transactions on Pattern Analysis and Machine Intelligence 2024:1-18. https://doi.org/10.1109/TPAMI.2024.3358168.

21. Diaz DPM. Staff turnover in companies. AG Managment 2023;1:16-16. https://doi.org/10.62486/agma202316.

22. Espinosa JCG, Sánchez LML, Pereira MAF. Benefits of Artificial Intelligence in human talent management. AG Multidisciplinar 2023;1:14-14. https://doi.org/10.62486/agmu202314.

23. Farhangian F, Cruz RMO, Cavalcanti GDC. Fake news detection: Taxonomy and comparative study. Information Fusion 2024;103. https://doi.org/10.1016/j.inffus.2023.102140.

24. Figueredo-Rigores A, Blanco-Romero L, Llevat-Romero D. Systemic view of periodontal diseases. AG Odontologia 2023;1:14-14. https://doi.org/10.62486/agodonto202314.

25. Ganpat RR, Ramnath SV. OE-MDL: Optimized Ensemble Machine and Deep Learning for Fake News Detection. International Journal of Intelligent Systems and Applications in Engineering 2024;12:60-85.

26. Gonzalez-Argote J, Castillo-González W. Productivity and Impact of the Scientific Production on Human-Computer Interaction in Scopus from 2018 to 2022. AG Multidisciplinar 2023;1:10-10. https://doi.org/10.62486/agmu202310.

27. Hannah Nithya S, Sahayadhas A. Meta-heuristic Searched-Ensemble Learning for fake news detection with optimal weighted feature selection approach. Data and Knowledge Engineering 2023;144. https://doi.org/10.1016/j.datak.2022.102124.

28. Hernández-Flórez N. Breaking stereotypes: “a philosophical reflection on women criminals from a gender perspective". AG Salud 2023;1:17-17. https://doi.org/10.62486/agsalud202317.

29. Hinojosa BLA, Mendoza OAV. Perceptions on the use of Digital Marketing of the micro-entrepreneurs of the textile sector of the Blue Gallery in the emporium of Gamarra. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:9-9. https://doi.org/10.56294/piii20239.

30. Hu L-H, Chen B-Y, Tan S-Q, Li B. Convnext-Upernet Based Deep-Learning Model for Image Forgery Detection and Localization. Jisuanji Xuebao/Chinese Journal of Computers 2023;46:2225-39. https://doi.org/10.11897/SP.J.1016.2023.02225.

31. Jaiswal AK, Srivastava R. Fake region identification in an image using deep learning segmentation model. Multimedia Tools and Applications 2023;82:38901-21. https://doi.org/10.1007/s11042-023-15032-6.

32. Khullar V, Singh HP. f-FNC: Privacy concerned efficient federated approach for fake news classification. Information Sciences 2023;639. https://doi.org/10.1016/j.ins.2023.119017.

33. Kotiyal B, Pathak H, Singh N. Debunking multi-lingual social media posts using deep learning. International Journal of Information Technology (Singapore) 2023;15:2569-81. https://doi.org/10.1007/s41870-023-01288-6.

34. Kozik R, Mazurczyk W, Cabaj K, Pawlicka A, Pawlicki M, Choraś M. Deep Learning for Combating Misinformation in Multicategorical Text Contents. Sensors 2023;23. https://doi.org/10.3390/s23249666.

35. Lamorú-Pardo AM, Álvarez-Romero Y, Rubio-Díaz D, González-Alvarez A, Pérez-Roque L, Vargas-Labrada LS. Dental caries, nutritional status and oral hygiene in schoolchildren, La Demajagua, 2022. AG Odontologia 2023;1:8-8. https://doi.org/10.62486/agodonto20238.

36. Ledesma-Céspedes N, Leyva-Samue L, Barrios-Ledesma L. Use of radiographs in endodontic treatments in pregnant women. AG Odontologia 2023;1:3-3. https://doi.org/10.62486/agodonto20233.

37. Lopez ACA. Contributions of John Calvin to education. A systematic review. AG Multidisciplinar 2023;1:11-11. https://doi.org/10.62486/agmu202311.

38. Luqman M, Faheem M, Ramay WY, Saeed MK, Ahmad MB. Utilizing Ensemble Learning for Detecting Multi-Modal Fake News. IEEE Access 2024;12:15037-49. https://doi.org/10.1109/ACCESS.2024.3357661.

39. Madani M, Motameni H, Mohamadi H. KNNGAN: an oversampling technique for textual imbalanced datasets. Journal of Supercomputing 2023;79:5291-326. https://doi.org/10.1007/s11227-022-04851-3.

40. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué RF. Older adult victims of violence. Satisfaction with health services in primary care. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:12-12. https://doi.org/10.56294/piii202312.

41. Marcillí MI, Fernández AP, Marsillí YI, Drullet DI, Isalgué VMF. Characterization of legal drug use in older adult caregivers who are victims of violence. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:13-13. https://doi.org/10.56294/piii202313.

42. Men X, Mariano VY. Explainable Fake News Detection Based on BERT and SHAP Applied to COVID-19. International Journal of Modern Education and Computer Science 2024;16:11-22. https://doi.org/10.5815/ijmecs.2024.01.02.

43. Moraes IB. Critical Analysis of Health Indicators in Primary Health Care: A Brazilian Perspective. AG Salud 2023;1:28-28. https://doi.org/10.62486/agsalud202328.

44. Nadeem MI, Ahmed K, Zheng Z, Li D, Assam M, Ghadi YY, et al. SSM: Stylometric and semantic similarity oriented multimodal fake news detection. Journal of King Saud University - Computer and Information Sciences 2023;35. https://doi.org/10.1016/j.jksuci.2023.101559.

45. Nadeem MI, Mohsan SAH, Ahmed K, Li D, Zheng Z, Shafiq M, et al. HyproBert: A Fake News Detection Model Based on Deep Hypercontext. Symmetry 2023;15. https://doi.org/10.3390/sym15020296.

46. Ogolodom MP, Ochong AD, Egop EB, Jeremiah CU, Madume AK, Nyenke CU, et al. Knowledge and perception of healthcare workers towards the adoption of artificial intelligence in healthcare service delivery in Nigeria. AG Salud 2023;1:16-16. https://doi.org/10.62486/agsalud202316.

47. Omar K, Sakr RH, Alrahmawy MF. An ensemble of CNNs with self-attention mechanism for DeepFake video detection. Neural Computing and Applications 2024;36:2749-65. https://doi.org/10.1007/s00521-023-09196-3.

48. Padalko H, Chomko V, Chumachenko D. A novel approach to fake news classification using LSTM-based deep learning models. Frontiers in Big Data 2023;6. https://doi.org/10.3389/fdata.2023.1320800.

49. Palani B, Elango S. BBC-FND: An ensemble of deep learning framework for textual fake news detection. Computers and Electrical Engineering 2023;110. https://doi.org/10.1016/j.compeleceng.2023.108866.

50. Peñaloza JEG, Bermúdez L marcela A, Calderón YMA. Perception of representativeness of the Assembly of Huila 2020-2023. AG Multidisciplinar 2023;1:13-13. https://doi.org/10.62486/agmu202313.

51. Pérez DQ, Palomo IQ, Santana YL, Rodríguez AC, Piñera YP. Predictive value of the neutrophil-lymphocyte index as a predictor of severity and death in patients treated for COVID-19. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:14-14. https://doi.org/10.56294/piii202314.

52. Prabhu R, Nashappa CS. A dynamic weight function based BERT auto encoder for sentiment analysis. International Journal of Applied Science and Engineering 2023;21. https://doi.org/10.6703/IJASE.202403_21(1).006.

53. Prado JMK do, Sena PMB. Information science based on FEBAB’s census of Brazilian library science: postgraduate data. Advanced Notes in Information Science 2023;5:1-23. https://doi.org/10.47909/978-9916-9906-9-8.73.

54. Pszona M, Janicka M, Wojdyga G, Wawer A. Towards universal methods for fake news detection. Natural Language Engineering 2023;29:1004-42. https://doi.org/10.1017/S1351324922000456.

55. Pupo-Martínez Y, Dalmau-Ramírez E, Meriño-Collazo L, Céspedes-Proenza I, Cruz-Sánchez A, Blanco-Romero L. Occlusal changes in primary dentition after treatment of dental interferences. AG Odontologia 2023;1:10-10. https://doi.org/10.62486/agodonto202310.

56. Quiroz FJR, Oncoy AWE. Resilience and life satisfaction in migrant university students residing in Lima. AG Salud 2023;1:9-9. https://doi.org/10.62486/agsalud20239.

57. Rao KS, Challa R, Sagar BJJK. Model for Fake News Detection Using AI Technique. International Journal of Safety and Security Engineering 2023;13:121-8. https://doi.org/10.18280/ijsse.130114.

58. Rao S, Verma AK, Bhatia T. Hybrid ensemble framework with self-attention mechanism for social spam detection on imbalanced data. Expert Systems with Applications 2023;217. https://doi.org/10.1016/j.eswa.2023.119594.

59. Roa BAV, Ortiz MAC, Cano CAG. Analysis of the simple tax regime in Colombia, case of night traders in the city of Florencia, Caquetá. AG Managment 2023;1:14-14. https://doi.org/10.62486/agma202314.

60. Rodríguez AL. Analysis of associative entrepreneurship as a territorial strategy in the municipality of Mesetas, Meta. AG Managment 2023;1:15-15. https://doi.org/10.62486/agma202315.

61. Rodríguez LPM, Sánchez PAS. Social appropriation of knowledge applying the knowledge management methodology. Case study: San Miguel de Sema, Boyacá. AG Managment 2023;1:13-13. https://doi.org/10.62486/agma202313.

62. Salh DA, Nabi RM. Kurdish Fake News Detection Based on Machine Learning Approaches. Passer Journal of Basic and Applied Sciences 2023;5:262-71. https://doi.org/10.24271/PSR.2023.380132.1226.

63. Salini Y, Harikiran J. Multiplicative Vector Fusion Model for Detecting Deepfake News in Social Media. Applied Sciences (Switzerland) 2023;13. https://doi.org/10.3390/app13074207.

64. Serra S, Revez J. As bibliotecas públicas na inclusão social de migrantes forçados na Área Metropolitana de Lisboa. Advanced Notes in Information Science 2023;5:49-99. https://doi.org/10.47909/978-9916-9906-9-8.50.

65. Siino M, Tinnirello I, La Cascia M. Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers. Information Systems 2024;121. https://doi.org/10.1016/j.is.2023.102342.

66. Solano AVC, Arboleda LDC, García CCC, Dominguez CDC. Benefits of artificial intelligence in companies. AG Managment 2023;1:17-17. https://doi.org/10.62486/agma202317.

67. Srinivasa K, Thilagam PS. Multi-layer perceptron based fake news classification using knowledge base triples. Applied Intelligence 2023;53:6276-87. https://doi.org/10.1007/s10489-022-03627-9.

68. Sultana R, Nishino T. Fake News Detection System using BERT and Boosting Algorithm. International Journal of Computers and their Applications 2023;30:223-34.

69. Tao J, Zhou L, Hickey K. Making sense of the black-boxes: Toward interpretable text classification using deep learning models. Journal of the Association for Information Science and Technology 2023;74:685-700. https://doi.org/10.1002/asi.24642.

70. Truică C-O, Apostol E-S. It’s All in the Embedding! Fake News Detection Using Document Embeddings. Mathematics 2023;11. https://doi.org/10.3390/math11030508.

71. Tufchi S, Yadav A, Ahmed T. A comprehensive survey of multimodal fake news detection techniques: advances, challenges, and opportunities. International Journal of Multimedia Information Retrieval 2023;12. https://doi.org/10.1007/s13735-023-00296-3.

72. Upadhyay R, Pasi G, Viviani M. Vec4Cred: a model for health misinformation detection in web pages. Multimedia Tools and Applications 2023;82:5271-90. https://doi.org/10.1007/s11042-022-13368-z.

73. Verma PK, Agrawal P, Madaan V, Prodan R. MCred: multi-modal message credibility for fake news detection using BERT and CNN. Journal of Ambient Intelligence and Humanized Computing 2023;14:10617-29. https://doi.org/10.1007/s12652-022-04338-2.

74. Wang S, Yang W, Li Z. Towards fake news refuter identification: Mixture of Chi-Merge grounded CNN approach. Expert Systems with Applications 2023;231. https://doi.org/10.1016/j.eswa.2023.120712.

75. Xiong S, Zhang G, Batra V, Xi L, Shi L, Liu L. TRIMOON: Two-Round Inconsistency-based Multi-modal fusion Network for fake news detection. Information Fusion 2023;93:150-8. https://doi.org/10.1016/j.inffus.2022.12.016.

76. Yadav AK, Kumar S, Kumar D, Kumar L, Kumar K, Maurya SK, et al. Fake News Detection Using Hybrid Deep Learning Method. SN Computer Science 2023;4. https://doi.org/10.1007/s42979-023-02296-w.

77. Zaheer H, Bashir M. Detecting fake news for COVID-19 using deep learning: a review. Multimedia Tools and Applications 2024. https://doi.org/10.1007/s11042-024-18564-7.

78. Zhang Q, Guo Z, Zhu Y, Vijayakumar P, Castiglione A, Gupta BB. A Deep Learning-based Fast Fake News Detection Model for Cyber-Physical Social Services. Pattern Recognition Letters 2023;168:31-8. https://doi.org/10.1016/j.patrec.2023.02.026

Downloads

Published

2024-03-10

How to Cite

1.
Maheswari RU, Sudha N. An efficient fake news classification model based on ensemble deep learning techniques. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Mar. 10 [cited 2024 Dec. 2];3:649. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1069