Evolution and monitoring of SARS-COV-2 genetic mutations in Ecuador

Authors

DOI:

https://doi.org/10.56294/sctconf2024.109

Keywords:

Genetic evolution, variants, pandemic dynamics, virulence

Abstract

Since its emergence in December 2019, SARS-CoV-2 has shown rapid genetic evolution, leading to various variants that have significantly influenced the dynamics of the pandemic. Mutations in the spike protein (S) have increased the virus's transmissibility and, in some cases, its virulence, affecting the efficacy of control measures, including vaccination and antiviral treatments. This retrospective and descriptive study, covering from March 2020 to the present, used national and international genomic data to analyze the evolution of variants in Ecuador. A total of 3,457 genomic sequences were collected, and key variants such as Alpha, Beta, Gamma, Delta, and Omicron were identified. Phylogenetic analyses revealed critical mutations like N501Y and E484K, associated with increased immune escape. Despite mass vaccination campaigns, the emergence of variants reduced vaccine efficacy in preventing infections, although vaccines continued to protect against severe cases. The evaluation of genomic surveillance systems highlighted the need to improve the speed and accuracy in detecting new variants. To optimize public health strategies, it is recommended to strengthen genomic surveillance, enhance coordination between institutions, update vaccination programs, and develop early warning systems. These measures are essential for improving the response to the ongoing evolution of the virus and minimizing its impact on public health

References

1. Duan H, Zhang E, Ren G, Cheng Y, Yang B, Liu L, et al. Exploring immune evasion of SARS-CoV-2 variants using a pseudotyped system. Heliyon [Internet]. 2024;10(8):e29939. Available from: https://www.sciencedirect.com/science/article/pii/S240584402405970X

2. Thousif Ahemad M, Abdul Hameed M. Obtaining an accurate estimate of the Covid-19 mutation rate via Coronavirus sequence analysis preeminent themes using convolutional neural networks. Meas Sensors [Internet]. 2024;33:101171. Available from: https://www.sciencedirect.com/science/article/pii/S2665917424001478

3. Rodríguez Rodríguez V. A propósito del SARS CoV 2/COVID 19¿ Qué hemos aprendido de las pandemias? Rev Av en salud [Internet]. 2020;4(1):6–10. Available from: https://revistas.unicordoba.edu.co/index.php/avancesalud/article/view/2034

4. Pérez Abeledo M, Sanz Moreno JC. Variantes de SARS-CoV-2, una historia todavía inacabada. Vacunas [Internet]. 2021;22(3):173–9. Available from: https://www.sciencedirect.com/science/article/pii/S1576988721000406

5. García León ML, Bautista Carbajal P, Ángel Ambrocio AH, Valadez González Y, Vásquez Martínez LM, Morales Fernández JA, et al. Caracterización genómica y variantes del virus SARS-CoV-2. Acta Médica Grup Ángeles [Internet]. 2021;19(3):445–56. Available from: https://www.sciencedirect.com/science/article/pii/S1576988721000406

6. Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci [Internet]. 2022 Feb;23(3):1–34. Available from: https://pubmed.ncbi.nlm.nih.gov/35163638/

7. Singh D, Yi S V. On the origin and evolution of SARS-CoV-2. Exp Mol Med [Internet]. 2021 Apr;53(4):537–47. Available from: https://pubmed.ncbi.nlm.nih.gov/33864026/

8. Mohammadi M, Shayestehpour M, Mirzaei H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Brazilian J Infect Dis [Internet]. 2021;25(04):101606. Available from: https://www.scielo.br/j/bjid/a/dYxfThwdjJcqkbySTcx6xsq/?lang=en

9. Expósito Lara A, Feria Díaz GE, González Benítez SN, Miguel Soca PE. Variantes genéticas del SARS-CoV-2 y sus implicaciones clínicas. Medisan [Internet]. 2021;25(6):1424–46. Available from: http://scielo.sld.cu/scielo.php?pid=S1029-30192021000601424&script=sci_arttext&tlng=pt

10. Bedoya Sommerkamp M, Medina Ranilla J, Chau Rodríguez V, Li Soldevilla R, Vera Albújar Á, García PJ. Variantes del SARS-CoV-2: epidemiología, fisiopatología y la importancia de las vacunas. Rev Peru Med Exp Salud Publica [Internet]. 2021;38(3):442–51. Available from: https://www.scielosp.org/article/rpmesp/2021.v38n3/442-451/es/

11. Guerrero S. Coronavirus en Ecuador: una opinión desde la Academia. LA GRANJA Rev Ciencias la Vida [Internet]. 2020;32(2):127–33. Available from: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-85962020000200127

12. Aguilar Gamboa FR, Suclupe Campos DO, Vega Fernández JA, Silva Diaz H. Diversidad genómica en SARS-CoV-2: Mutaciones y variantes. Rev del Cuerpo Médico Hosp Nac Almanzor Aguinaga Asenjo [Internet]. 2021;14(4):572–82. Available from: http://www.scielo.org.pe/scielo.php?pid=S2227-47312021000500020&script=sci_arttext&tlng=en

13. Tareq AM, Emran T Bin, Dhama K, Dhawan M, Tallei TE. Impact of SARS-CoV-2 delta variant (B. 1.617. 2) in surging second wave of COVID-19 and efficacy of vaccines in tackling the ongoing pandemic. Hum Vaccin Immunother [Internet]. 2021;17(11):4126–7. Available from: https://www.tandfonline.com/doi/full/10.1080/21645515.2021.1963601

14. Paulette Analía FL, Jhon Arturo NM, Sheylla Aslhey MY, Alida Alexandra GA. Variantes del Sars-CoV-2: Característica genômica. Ciência Lat Rev Científica Multidiscip [Internet]. 2022;6(1):1744–63. Available from: https://ciencialatina.org/index.php/cienciala/article/download/1608/2252?inline=1

15. Zhang W, Davis BD, Chen SS, Martinez JMS, Plummer JT, Vail E. Emergence of a novel SARS-CoV-2 variant in Southern California. Jama [Internet]. 2021;325(13):1324–6. Available from: https://jamanetwork.com/journals/jama/article-abstract/2776543

16. Darvishi M, Rahimi F, Abadi ATB. SARS-CoV-2 Lambda (C. 37): An emerging variant of concern? Gene Reports [Internet]. 2021;25(2):101378. Available from: https://journals.asm.org/doi/full/10.1128/spectrum.00789-21

17. Orellana Centeno JE, Guerrero Sotelo RN. La variante SARS-CoV-2 ómicron. Rev ADM Órgano Of la Asoc Dent Mex [Internet]. 2022;79(1):28–31. Available from: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=103815

18. Romo Castillo H, Zurita J, Cárdenas P, Grunauer M. La pandemia en Ecuador en 2021. Gac Med Caracas [Internet]. 2022;130(2S):S362–9. Available from: http://saber.ucv.ve/ojs/index.php/rev_gmc/article/view/24113

19. Díaz-Armas MT, Sánchez-Artigas R, Matute-Respo TZ, Llumiquinga-Achi RA. Proteína de la espícula del virus SARS-CoV-2 y su relación con la enzima convertidora de angiotensina-2. Rev Inf Cient [Internet]. 2021;100(5). Disponible en: https://revinfcientifica.sld.cu/index.php/ric/article/view/3633

20. De los Ríos Chávez HJ, Chávez Márquez IL. Incidencia de ansiedad en estudiantes universitarios del área económico-administrativa: un análisis exploratorio. Dilemas contemp: educ política valores [Internet]. 2024 [cited 2024 Sep 14]; Available from: https://dilemascontemporaneoseducacionpoliticayvalores.com/index.php/dilemas/article/view/4175.

Downloads

Published

2024-12-03

How to Cite

1.
Chiluisa Guacho C, Gómez Martínez N, Vilema Vizuete GE. Evolution and monitoring of SARS-COV-2 genetic mutations in Ecuador. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Dec. 3 [cited 2025 Mar. 17];3:.109. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/109