Artificial and Deceitful Faces Detection Using Machine Learning

Authors

  • Balusamy Nachiappan Prologis, Denver, Colorado 80202 USA Author
  • N Rajkumar Department of Computer Science & Engineering, Alliance College of Engineering and Design, Alliance University, Bangalore, Karnataka, India Author
  • C Viji Department of Computer Science & Engineering, Alliance College of Engineering and Design, Alliance University, Bangalore, Karnataka, India Author
  • A Mohanraj Sri Eshwar College of Engineering, Coimbatore, Tamilnadu, India Author

DOI:

https://doi.org/10.56294/sctconf2024611

Keywords:

Convolution Neural Network, Image Forensics, Deep learning, Generative Adversarial Network

Abstract

Security certification is becoming popular for many applications, such as significant financial transactions. PIN and password authentication is the most common method of authentication. Due to the finite length of the password, the security level is low and can be easily damaged. Adding a new dimension to the sensing mode-driven state-of-the-art multi-modal boundary face recognition system of the image-based solutions. It combines the active complex visual features extracted from the latest facial recognition model and uses a custom Convolution Neural Network issue facial authentications and extraction capabilities to ensure the safety of face recognition. The Echo function is dependent on the geometry and material of the face, not disguised by the pictures and videos, such as multi-modal design is easy to image-based face recognition system

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale gadget getting to know on heterogeneous disbursed systems. arXiv preprintarXiv:1603.04467 (2016).

2. Bayar B, Stamm MC. A deep getting-to-know technique to accepted picture manipulation detection the usage of a brand new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. 2016:5–10.

3. Berthelot D, Schumm T, Metz L. Began: Boundary equilibrium generative adverse networks. arXiv preprint arXiv:1703.10717 (2017).

4. Cao G, Zhao Y, Ni R, Li X. Contrast enhancement-based forensics in virtual images. IEEE transactions on records forensics and protection. 2014;9(3):515–525.

5. Chen J, Kang X, Liu Y, Wang ZJ. Median filtering forensics primarily based totally on convolutional neural networks. IEEE Signal Processing Letters. 2015;22(11):1849–1853.

6. Chen M, Sedighi V, Boroumand M, Fridrich J. JPEGPhase-Aware Convolutional Neural Network for Steganalysis of JPEG Images. In ACM Workshop on Information Hiding and Multimedia Security. 2017:75–84.

7. Choi HY, Jang HU, Kim D, Son J, Mun SM, Choi S, et al. Detecting composite image manipulation based on deep neural networks. In IEEE International Conference on Systems, Signals and Image Processing.

8. Alarcon JCM. Information security: A comprehensive approach to risk management in the digital world. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:84-84. https://doi.org/10.56294/piii202384.

9. Alarifi JS, Goyal M, Davison AK, Dancey D, Khan R, Yap MH. Facial skin classification using convolutional neural networks. In International Conference Image Analysis and Recognition. Springer. 2017:479–485.

10. Anandakumar H, Arulmurugan R. Early Detection of Lung Cancer using Wavelet using Neural Networks Classifier. In Computational Vision and Bio Inspired Computing, Lecture Notes in Computational Vision and Biomechanics, Springer Book Series, Volume No – 28, Chapter No – 09. 2017. ISBN: 978-3-319-71766-1.

11. Auza-Santiváñez JC, Díaz JAC, Cruz OAV, Robles-Nina SM, Escalante CS, Huanca BA. Bibliometric Analysis of the Worldwide Scholarly Output on Artificial Intelligence in Scopus. Gamification and Augmented Reality 2023;1:11-11. https://doi.org/10.56294/gr202311.

12. Auza-Santivañez JC, Lopez-Quispe AG, Carías A, Huanca BA, Remón AS, Condo-Gutierrez AR, et al. Improvements in functionality and quality of life after aquatic therapy in stroke survivors. AG Salud 2023;1:15-15. https://doi.org/10.62486/agsalud202315.

13. Barrios CJC, Hereñú MP, Francisco SM. Augmented reality for surgical skills training, update on the topic. Gamification and Augmented Reality 2023;1:8-8. https://doi.org/10.56294/gr20238.

14. Batista-Mariño Y, Gutiérrez-Cristo HG, Díaz-Vidal M, Peña-Marrero Y, Mulet-Labrada S, Díaz LE-R. Behavior of stomatological emergencies of dental origin. Mario Pozo Ochoa Stomatology Clinic. 2022-2023. AG Odontologia 2023;1:6-6. https://doi.org/10.62486/agodonto20236.

15. Cano CAG, Castillo VS. Systematic review on Augmented Reality in health education. Gamification and Augmented Reality 2023;1:28-28. https://doi.org/10.56294/gr202328.

16. Cardenas DC. Health and Safety at Work: Importance of the Ergonomic Workplace. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:83-83. https://doi.org/10.56294/piii202383.

17. Castillo-González W. Kinesthetic treatment on stiffness, quality of life and functional independence in patients with rheumatoid arthritis. AG Salud 2023;1:20-20. https://doi.org/10.62486/agsalud202320.

18. Cuervo MED. Exclusive breastfeeding. Factors that influence its abandonment. AG Multidisciplinar 2023;1:6-6. https://doi.org/10.62486/agmu20236.

19. Diaz DPM. Staff turnover in companies. AG Managment 2023;1:16-16. https://doi.org/10.62486/agma202316.

20. Dionicio RJA, Serna YPO, Claudio BAM, Ruiz JAZ. Sales processes of the consultants of a company in the bakery industry. Southern Perspective / Perspectiva Austral 2023;1:2-2. https://doi.org/10.56294/pa20232.

21. Dumoulin V, Shlens J, Kudlur M. A learned representation for artistic style. In Proceedings of International Conference on Learning Representations. 2017.

22. Figueredo-Rigores A, Blanco-Romero L, Llevat-Romero D. Systemic view of periodontal diseases. AG Odontologia 2023;1:14-14. https://doi.org/10.62486/agodonto202314.

23. Frank M, Ricci E. Education for sustainability: Transforming school curricula. Southern Perspective / Perspectiva Austral 2023;1:3-3. https://doi.org/10.56294/pa20233.

24. Gómez LVB, Guevara DAN. Analysis of the difference of the legally relevant facts of the indicator facts. AG Multidisciplinar 2023;1:17-17. https://doi.org/10.62486/agmu202317.

25. Gonzalez-Argote D, Gonzalez-Argote J, Machuca-Contreras F. Blockchain in the health sector: a systematic literature review of success cases. Gamification and Augmented Reality 2023;1:6-6. https://doi.org/10.56294/gr20236.

26. Gonzalez-Argote J, Castillo-González W. Productivity and Impact of the Scientific Production on Human-Computer Interaction in Scopus from 2018 to 2022. AG Multidisciplinar 2023;1:10-10. https://doi.org/10.62486/agmu202310.

27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In Advances in neural information processing systems. 2014:2672–2680.

28. Herera LMZ. Consequences of global warming. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:74-74. https://doi.org/10.56294/piii202374.

29. Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion. ACM Transactions on Graphics. 2017;36(4):107:1–107:1.

30. Ledesma-Céspedes N, Leyva-Samue L, Barrios-Ledesma L. Use of radiographs in endodontic treatments in pregnant women. AG Odontologia 2023;1:3-3. https://doi.org/10.62486/agodonto20233.

31. Lopez ACA. Contributions of John Calvin to education. A systematic review. AG Multidisciplinar 2023;1:11-11. https://doi.org/10.62486/agmu202311.

32. Marcelo KVG, Claudio BAM, Ruiz JAZ. Impact of Work Motivation on service advisors of a public institution in North Lima. Southern Perspective / Perspectiva Austral 2023;1:11-11. https://doi.org/10.56294/pa202311.

33. Millán YA, Montano-Silva RM, Ruiz-Salazar R. Epidemiology of oral cancer. AG Odontologia 2023;1:17-17. https://doi.org/10.62486/agodonto202317.

34. Mosquera ASB, Román-Mireles A, Rodríguez-Álvarez AM, Mora CC, Esmeraldas E del CO, Barrios BSV, et al. Science as a bridge to scientific knowledge: literature review. AG Multidisciplinar 2023;1:20-20. https://doi.org/10.62486/agmu202320.

35. Niranjani V, Selvam NS. Overview on Deep Neural Networks: Architecture, Application and Rising Analysis Trends. In EAI/Springer Innovations in Communication and Computing. 2020:271–278.

36. Ojeda EKE. Emotional Salary. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:73-73. https://doi.org/10.56294/piii202373.

37. Olguín-Martínez CM, Rivera RIB, Perez RLR, Guzmán JRV, Romero-Carazas R, Suárez NR, et al. Bibliometric analysis of occupational health in civil construction works. AG Salud 2023;1:10-10. https://doi.org/10.62486/agsalud202310.

38. Osorio CA, Londoño CÁ. El dictamen pericial en la jurisdicción contenciosa administrativa de conformidad con la ley 2080 de 2021. Southern Perspective / Perspectiva Austral 2024;2:22-22. https://doi.org/10.56294/pa202422.

39. Polo LFB. Effects of stress on employees. AG Salud 2023;1:31-31. https://doi.org/10.62486/agsalud202331.

40. Pupo-Martínez Y, Dalmau-Ramírez E, Meriño-Collazo L, Céspedes-Proenza I, Cruz-Sánchez A, Blanco-Romero L. Occlusal changes in primary dentition after treatment of dental interferences. AG Odontologia 2023;1:10-10. https://doi.org/10.62486/agodonto202310.

41. Ramos YAV. Little Attention of Companies in the Commercial Sector Regarding the Implementation of Safety and Health at Work in Colombia During the Year 2015 to 2020. SCT Proceedings in Interdisciplinary Insights and Innovations 2023;1:79-79. https://doi.org/10.56294/piii202379.

42. Roa BAV, Ortiz MAC, Cano CAG. Analysis of the simple tax regime in Colombia, case of night traders in the city of Florencia, Caquetá. AG Managment 2023;1:14-14. https://doi.org/10.62486/agma202314.

43. Rodríguez LPM, Sánchez PAS. Social appropriation of knowledge applying the knowledge management methodology. Case study: San Miguel de Sema, Boyacá. AG Managment 2023;1:13-13. https://doi.org/10.62486/agma202313.

44. Romero-Carazas R. Prompt lawyer: a challenge in the face of the integration of artificial intelligence and law. Gamification and Augmented Reality 2023;1:7-7. https://doi.org/10.56294/gr20237.

45. Saavedra MOR. Revaluation of Property, Plant and Equipment under the criteria of IAS 16: Property, Plant and Equipment. AG Managment 2023;1:11-11. https://doi.org/10.62486/agma202311.

46. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In ICCV. 2017:618–626.

47. Solano AVC, Arboleda LDC, García CCC, Dominguez CDC. Benefits of artificial intelligence in companies. AG Managment 2023;1:17-17. https://doi.org/10.62486/agma202317.

48. Valdés IYM, Valdés LC, Fuentes SS. Professional development, professionalization and successful professional performance of the Bachelor of Optometry and Opticianry. AG Salud 2023;1:7-7. https://doi.org/10.62486/agsalud20237.

49. Velásquez AA, Gómez JAY, Claudio BAM, Ruiz JAZ. Soft skills and the labor market insertion of students in the last cycles of administration at a university in northern Lima. Southern Perspective / Perspectiva Austral 2024;2:21-21. https://doi.org/10.56294/pa202421.

50. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on. IEEE. 2016:2921–2929

Downloads

Published

2024-03-10

How to Cite

1.
Nachiappan B, Rajkumar N, Viji C, Mohanraj A. Artificial and Deceitful Faces Detection Using Machine Learning. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Mar. 10 [cited 2025 Feb. 10];3:611. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1090