Radon-222, silent enemy of health: Systematic review
DOI:
https://doi.org/10.56294/sctconf2024.1145Keywords:
Radon gas 222, Inhalation of radon gas, cancer and radon gas, public policy and radon gas, Radon decay products, Radon progenyAbstract
Radon is a topic with little research in Perú, it is very relevant to do a study on it and show how radon affects the population. The objective of the research was to analyze Radon 222, as a silent enemy of health through a systematic review. Methodology: the systematic review article has a qualitative approach, the Prism methodology was used, and the analysis of the documents was from the search in specialized databases of Scopus, Web Of Science, Scielo and on the Internet, similar search strategies were applied through the Boolean operators AND and OR, two keywords were taken from a health thesaurus. The results show that a derivative of uranium is radon Rn 222 found in high concentrations in buildings, water, soil and especially in granite rocks. Radiation exposure and its adverse effects on respiratory health pose a significant risk to public health. Public policies in Perú are weak in relation to the issue. It is concluded that radon Rn 222 is a gas that silently affects Society and is a cause of cancer in the lung of humanity. Peru's nuclear power governing body has little up-to-date research on radon.
References
1.Agustya M, Prayogo A, Nugraha J, Pakpahan S, Riama N (2021). Network of Radon Gas Concentration Monitoring of Research and Development Centre - BMKG for Earthquake Precursor Research in Indonesia. IOP Conference Series: Earth and Environmental Science, 873(1). https://doi.org/10.1088/1755-1315/873/1/012006
2.Al K, Al A, Abdul E, Abass A, Abd A (2022). Assessment of Radon gas concentration in Tap water supply of Haditha Town / west Al-Anbar Governorate / Iraq. IOP Conference Series: Earth and Environmental Science, 1080(1), 1–82. https://doi.org/10.1088/1755-1315/1080/1/012002
3.Albazoni H, Almayahi B (2022). Determination of radon gas and lead ion concentrations in building materials using biosensors. International Journal of Radiation Research, 20(1), 245–248. https://doi.org/10.52547/ijrr.20.1.38
4.Bandeira N, Marçalo J (2023a). The inert pair effect on heavy noble gases: insights from radon tetroxide. Physical Chemistry Chemical Physics, 25(20), 14084–14088. https://doi.org/10.1039/d3cp01347b
5.Bandeira, N, Marçalo J (2023b). The inert pair effect on heavy noble gases: insights from radon tetroxide. Physical Chemistry Chemical Physics, 25(20), 14084–14088. https://doi.org/10.1039/d3cp01347b
6.Beltrán S, Szabó K, Tóth G, Tóth- Bodrogi E, Kovács T, Szabó C (2023). Estimated versus field measured soil gas radon concentration and soil gas permeability. Journal of Environmental Radioactivity, 265(June), 107224. https://doi.org/10.1016/j.jenvrad.2023.107224
7.Briones C, Jubera J, Alonso H, Olaiz J, Santana J, Rodríguez-Brito N, Arriola-Velásquez, Miquel N, Tejera A, Martel P, González-Díaz E, Rubiano J (2023). Multiparametric analysis for the determination of radon potential areas in buildings on different soils of volcanic origin. Science of the Total Environment, 885(February). https://doi.org/10.1016/j.scitotenv.2023.163761
8.Cajal B, Jiménez R, Gervilla E, Montaño J (2020). La revisión sistemática en las ciencias de la salud. Clínica y Salud, 31, 77–83. https://doi.org/doi.org/10.5093/clysa2020a15
9.Cholowsky N, Chen J, Selouani G, Pett S, Pearson D, Danforth J, Fenton S, Rydz E, Diteljan M, Peters C, Goodarzi A (2023). Consequences of changing Canadian activity patterns since the COVID-19 pandemic include increased residential radon gas exposure for younger people. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-32416-8
10.Cholowsky N, Irvine J, Simms J, Pearson D, Jacques, W, Peters C, Goodarzi, A, Carlson L (2021). The efficacy of public health information for encouraging radon gas awareness and testing varies by audience age, sex and profession. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-91479-7
11.Di Carlo C, Maiorana A, Ampollini M, Antignani S, Caprio M, Carpentieri C, Bochicchio, F (2023). Models of radon exhalation from building structures: general and case-specific solutions. Science of the Total Environment, 885(January), 163800. https://doi.org/10.1016/j.scitotenv.2023.163800
12.García, D, Montoya M, Tan Y (2023). Understanding the Susceptibility of the Tropical Proglacial Environment in Peru Using Optical Imagery and Radon Measurements. Atmosphere, 14(3), 1–22. https://doi.org/10.3390/atmos14030568
13.Giraldo A, Ruano A, Rey J, Arias N, Candal C, Pérez M (2022). Lung cancer mortality trends in Colombia, 1985-2018. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 46, 1–7. https://doi.org/10.26633/RPSP.2022.127
14.Hameed T, Omron A, Abbas S, Karim M (2021). Measurement of 222Rn gas Concentrations and Radon Exhalation Rates in Some Cigarettes Tobacco Samples. Iraqi Journal of Science, 62(11), 4300–4303. https://doi.org/10.24996/ijs.2021.62.11(SI).10
15.Jáuregui R (2015). Desconocimiento, desregulación, desinterés político y percepción de la energía nuclear como limitaciones para la implementación de un proyecto nucleoeléctrico en el Perú. Revista Gobierno Y Gestión Pública, 2(1), 10–26.
16.Khan S, Pearson D, Rönnqvist T, Nielsen M, Taron J, Goodarzi A (2021). Rising Canadian and falling Swedish radon gas exposure as a consequence of 20th to 21st century residential build practices. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-96928-x
17.Kyu J, Seo S, Woo Y (2019). Health effects of radon exposure. Yonsei Medical Journal, 60(7), 597. https://doi.org/10.3349/ymj.2019.60.7.597
18.Levin I, Karstens U, Hammer S, Dellacoletta J, Maier F, Gachkivskyi M (2021). Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions - A case study for methane in Heidelberg. Atmospheric Chemistry and Physics, 21(23), 17907–17926. https://doi.org/10.5194/acp-21-17907-2021
19.Marcelo R, Spooner N, Berry J, Ezeribe A, Miuchi K, Ogawa H, Scarff A (2021). Test of low radioactive molecular sieves for radon filtration in SF 6 gas-based rare-event physics experiments. Journal of Instrumentation, 16(06), P06024. https://doi.org/10.1088/1748-0221/16/06/P06024
20.Medina A, Sánchez D, Alonso I (2021). An Internet of Thing Architecture Based on Message Queuing Telemetry Transport Protocol and Node-RED: A Case Study for Monitoring Radon Gas. Smart Cities, 4(2), 803–818. https://doi.org/10.3390/smartcities4020041
21.Naji, T, Hassoon S (2021). Measuring of Radon Gas Concentrations in serum samples of Lung cancer patients in Babylon governorate, Iraq. Journal of Physics: Conference Series, 1999(1), 012054. https://doi.org/10.1088/1742-6596/1999/1/012054
22.Nuhu H, Hashim S, Saleh M, Sanusi M, Alomari A, Jamal M, Abdullah R, Hassan S (2021). Soil gas radon and soil permeability assessment: Mapping radon risk areas in Perak State, Malaysia. PLoS ONE, 16(7 July), 1–17. https://doi.org/10.1371/journal.pone.0254099
23.Organización Mundial de la Salud. (2021). OMS-El radón y sus efectos en la salud. OMS. https://www.who.int/es/news-room/fact-sheets/detail/radon-and-health
24.Page M, McKenziea J, Bossuytb P, Boutronc I, Hoffmannd T, Mulrowe C, Shamseerf L, Tetzlaffg J, Aklh E, Brennana S, Choui R, Glanvillej J, Grimshawk J, Bjartssonl A, Lalum M, Lin T, Lodero E, Mayo E, McDonald S, Alonso, S. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Revista Espanola de Cardiologia, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016
25.Page M, Mckenzie J, Bossuit P, Boutron I, Tammy H, Mulrow C, Shamsee L, Tetzlaff J, Aki E, Brenna S, Chou R, Glaville J, Grimshaw J, Hróbjartsson A, Lalu M, Li T, Loder E, Mayo E, McDonal S, Moher D (2022). A declaração PRISMA 2020: Diretriz atualizada para relatar revisões sistemáticas. Epidemiologia e Servicos de Saude, 31(2), 1–12. https://doi.org/10.5123/S1679-49742022000200033
26.Papenfuß F, Maier A, Sternkopf S, Fournier C, Kraft G, Friedrich T (2023). Radon progeny measurements in a ventilated filter system to study respiratory-supported exposure. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-37697-7
27.Radulescu, I., Calin, M. R., Luca, A., Röttger, A., Grossi, C., Done, L., & Ioan, M. R. (2022). Inter-comparison of commercial continuous radon monitors responses. Nuclear Inst. and Methods in Physics Research, A, 1021, 165927.
28.Rizo C, Echarri V (2020). Radon gas in the city of alicante. High risk of low indoor air quality in poorly ventilated buildings. International Journal of Environmental Research and Public Health, 17(23), 1–25. https://doi.org/10.3390/ijerph17238762
29.Rodal Y, Shemer A, Schwarz A, Ozana N, Zafrir H, Zalevsky Z (2021). Usage of fiber optics as an underground deployable radon gas detector. OSA Continuum, 4(12), 3026. https://doi.org/10.1364/OSAC.444262
30.Rojas N, Blanco C, Rojas S (2022). Influence of radon gas removal on the oxygenation of thermal water bodies in the Paipa-Boyacá area. Journal of Applied Research and Technology, 13, 374–381.
31.Santamarta J, Lario R, Morales Á, Cruz N (2022). How do CO2 and radon gases affect groundwater mining in the Canary Islands? Minig Mineração, 75(4), 337–344.
32.Seo S, Kang J, Lee D, Jin Y (2019). Health effects and consultations about radon exposure. Journal of the Korean Medical Association, 62(7), 376–382. https://doi.org/10.5124/jkma.2019.62.7.376
33.Simms J, Pearson D, Cholowsky N, Irvine J, Nielsen M, Jacques W, Taron J, Peters C, Carlson L, Goodarzi A (2021). Younger North Americans are exposed to more radon gas due to occupancy biases within the residential built environment. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-86096-3
34.Strydom T, Nel J, Nel M, Petersen R, Ramjukadh C (2021). The use of radon (Rn222) isotopes to detect groundwater discharge in streams draining table mountain group (tmg) aquifers. Water SA, 47(2), 194–199. https://doi.org/10.17159/wsa/2021.v47.i2.10915
35.United Nations (2008). UNSCEAR 2008 Report on Sources and Effects of Ionizing Radiation. In United Nations (Vol. 1).
36.Vilcapoma L, Herrera M, Pereyra P, Palacios D, Pérez B, Rojas J, Sajo-Bohus L (2019). Measurement of radon in soils of Lima city - Peru during the period 2016-2017. Earth Sciences Research Journal, 23(3), 171–183. https://doi.org/10.15446/esrj.v23n3.74108
37.Villalba P, Hidalgo D, Arco J, Villalba J (2020). Study of Radon concentrations in a single-family home and their relationship with the ventilation system. Revista de La Construccion, 19(3), 443–456.
38.Yakhdani M, Jalili M, Salehi-Abargouei A, Mirzaei M, Rahimdel A, Ebrahimi A (2021). Interaction of MS prevalence, radon gas concentration, and patient nutrition: a case–control study. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-96816-4
39.Yarmoshenko I, Onishchenko A, Malinovsky G, Vasilyev A, Zhukovsky M (2022). MODELING and justification of indoor radon prevention and remediation measures in multi-storey apartment buildings. Results in Engineering, 16(November). https://doi.org/10.1016/j.rineng.2022.100754
Published
Issue
Section
License
Copyright (c) 2024 William Pedro Verástegui-López, Percy Salazar-Matos, Wilder Abel Fernández-Campos, Gustavo Ernesto Zárate-Ruiz, Cristian Gumercindo Medina-Sotelo, Nilton Isaias Cueva-Quezada (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.