Optimized design and research of direct-drive permanent magnet synchronous motor for hydra pulper
DOI:
https://doi.org/10.56294/sctconf2024.1019Keywords:
hydra pulper, direct drive permanent magnet synchronous motor, finite element analysis, genetic algorithmAbstract
This paper presents the design of a direct-drive permanent magnet synchronous motor specifi-cally tailored for the transmission of a hydra pulper, boasting a rated power of 350 kW and a rated speed of 230r/min. A finite element model of the direct-drive permanent magnet synchronous motor is established to comprehensively analyze various performance parameters, encompassing magnetic characteristics, magnetic circuitry, reverse electromotive force, and more. Employing the coercive force method in conjunction with the magnetic density method, the demagnetization propensity of the permanent magnet under extreme operating conditions is evaluated and analyzed, facilitating the rapid identification of boundary size conditions for the permanent magnet and thereby mitigating overall motor costs. Furthermore, a genetic algorithm is employed to optimize the structural parameters of the direct-drive permanent magnet synchronous motor, enhancing comprehensive performance parameters such as power, efficiency, power factor, torque ripple, among others, while ensuring the motor remains demagnetization-free.
References
[1]F. Mahdavi, A. D. Aliabad, E. Amiri, et al. Dual-pole line start synchronous machine with consequent-magnetic poles[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1648-1657.DOI: 10.1109/TEC.2020.2986462
[2]M. Lin, D. Li, X. Ren, et al. Line-start vernier permanent magnet machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 707-3718. DOI: 10.1109/TIE.2020.2982102
[3]M. F. Palangar, A. Mahmoudi, S. Kahourzade, et al. Electromagnetic and thermal analysis of a line-start permanent-magnet synchronous motor[C]// Energy Conversion Congress and Exposition (ECCE). Detroit, MI, USA: IEEE, 2020: 502-508. DOI: 10.1109/ECCE44975.2020.9235632
[4]Isfahani A H, Vaez-Zadeh S. Line start permanent magnet synchronous motors: challenges and opportunities[J]. Energy, 2009, 34(11): 1755-1763. https://doi.org/10.1016/j.energy.2009.04.022
[5]C. G. Heo, H. M. Kim, G. S. Park. Design of rotor bar inclination in squirrel cage induction motor[J]. IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-4, Nov. 2017. DOI 10.1109/TMAG.2017.2696977
[6]S. Baka, S. Sashidhar, B. G. Fernandes. Design and optimization of a two-pole line-start ferrite assisted synchronous reluctance motor[C]//Proc. XIII Int. Conf. Elect. Mach.. Alexandroupoli, Greece: IEEE, 2018: 131–137.DOI: 10.1109/ICELMACH.2018.8507187
[7]S. Baka, S. Sashidhar, B. G. Fernandes. Design of an energy efficient line-start two-pole ferrite assisted synchronous reluctance motor for water pumps[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 961-970. DOI: 10.1109/TEC.2020.3029110
[8]A. Waheed, J. -S. Ro. Analytical modeling for optimal rotor shape to design highly efficient line-start permanent magnet synchronous motor[J]. IEEE Access, 2020, 8: 145672-145686.DOI: 10.1109/ACCESS.2020.3014718
[9]M. F. Palangar, A. Mahmoudi, S. Kahourzade, et al. Optimum design of line-start permanent-magnet synchronous motor using mathematical method[C]//Energy Conversion Congress and Exposition (ECCE). Detroit, MI, USA: IEEE, 2020: 2064-2071.DOI: 10.1109/ECCE44975.2020.9236205
[10]J. Pecho, W. Hofmann. Analysis of the effects of parameter variations on the start-up characteristics of LSPMSM[C]//Proc. 21st Eur. Conf. Power Electron. Appl.. Genova, Italy: IEEE, 2019: 1–10.DOI: 10.23919/EPE.2019.8914800
[11]Mahmood Z, Ikram J, Badar R, et al. Minimization of Torque Ripples in Multi-Stack Slotted Stator AxialFlux Synchronous Machine by Modifying Magnet Shape[J]. Mathematics, 2022, 10(10): 1653. https://doi.org/10.3390/math10101653
[12]Ilka R, Alinejad-Beromi Y, Yaghobi H. Cogging torque reduction of permanent magnet synchronous motor using multi-objective optimization[J]. Mathematics and Computers in Simulation, 2018, 153: 83-95.
[13]Wu S, Huang X, Tian C, et al. Multi-physical field optimization analysis of high-speed permanent magnet synchronous motor based on NSGA-II algorithm[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2019: 1-6.DOI: 10.1109/ICEMS.2019.8922236
[14]Zhao W, Wang X, Gerada C, et al. Multi-physics and multi-objective optimization of a high speed PMSM for high performance applications[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.DOI: 10.1109/ICEMS.2019.8922236
Published
Issue
Section
License
Copyright (c) 2024 Fengmei Shen, Celso Bation Co, Rowell M. Hernandez, Celso Bation Co (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.