Chemical bonding in the quantum and classical models
DOI:
https://doi.org/10.56294/sctconf2024.1399Keywords:
Chemical bonding, atomic orbital, molecular orbital, linear combination of atomic orbitals, bonding orbitals, antibonding orbitalsAbstract
Many questions arise when writing reaction mechanisms, and therefore require answers for which the molecular formulas of the different species, reagents or intermediates, conform to the rules of classical and quantum models for the construction of different species, and show single, double or triple bonds, non-bonding doublets, electron vacancies and charges, as well as mesomeric forms where appropriate.The linear combination of atomic orbitals LCAO provides a visual representation of the energy levels associated with the different molecular orbitals formed from Atomic Orbitals (AO). LCAO is crucial for understanding the stability of molecules and the types of bonds they can form. Molecular Orbitals (MO) can be classified into two broad categories: bonding orbitals and antibonding orbitals. The quantum model is particularly well suited to describing diatomic molecules. It can help explain, for example, why some molecules exist in nature and others does not, such as rare gas and alkaline-earth molecules, the relative strength of chemical bonds, and the origin of certain physical properties such as the dipole moment and magnetism of molecules.
The aim of this work is to compare the representation of chemical species between the quantum model (molecular orbital and hybridization theories) and the classical model (Gillespie theories and the systematic method of representing a molecule)
References
[1] Peter Atkins, Julio de Paula, James Keeler, Atkins' Physical Chemistry, 11th Edition, Oxford University Press; 2002.
[2] P. Chaquin et F. Fuster, OrbiMol, Sorbonne Université, CNRS, Laboratoire de Chimie Théorique (LCT), 75005 Paris (France) ; 2012.
[3] Pierre Grécias, Jean-Pierre Migeon, Chimie Tome 1, Cours Et Tests D'Application, 4éme Edition Broché, Paris, France ; 1995.
[4] Smail Meziane, Chimie générale structure de la matière, 4éme Editions BERTI, Algérie ; 2015.
[5] Yves Jean, Les orbitales moléculaires dans les complexes: cours et exercices corrigés, Editions Ecole Polytechnique, France ; 2003.
[6] P. Chaquin, Y. Canac, C. Lepetit, D Zargarian, R. Chauvin. Estimating local bonding/antibonding character of canonical molecular orbitals from their energy derivatives. The case of coordinating lone pair orbitals. International Journal of Quantum Chemistry, 2016, 116, pp.1285 - 1295.
[7] A. lattes, G. Montel, introduction à la chimie structurale, Edition Dunod, Paris France ; 1969.
[8] C. Comninellis, C. K. W. Friedli, A. Sahil-Migirdicyan, Exercices de chimie générale, Collection :Chimie, Laussane, Suisse ; 2018.
[9] Elisabeth Le Masne de Chermont, Arnaud Le Masne de Chermont, Cours de chimie, Éditeur : Heures de France, 2éme édition, France ; 1998.
[10] Maurice Griffé, Chimie, Presses Universitaires De NAMUR, 2éme édition, Belgique ; 2002.
[11] R. Ouahes, B. Devallez, Chimie générale, Edition PUPLISUD, Paris, France ; 1988.
[12] Moszkowicz Pierre, l’atome et la molécule, Alger O. P. U ; 1990.
[13] Le Coarer Jacques, Chimie le minimum à savoir, EDP Sciences, Collection : Grenoble Sciences, France ; 2003.
[14] Alain Sevin, Christine Dézarnaud-Dandine, liaisons chimiques, structure et réactivité, cours et exercices corrigés, Sciences Sup, Dunod, Paris ; 2006.
[15] Yves Jean, Les orbitales moléculaires dans les complexes: cours et exercices corrigés, Editions Ecole Polytechnique, France ; 2003.
[16] Philippe Hiberty et Nguyên Trong Anh, Introduction à la chimie quantique, Éditions École Polytechnique, Paris, France ; 2008.
[17] P. Chaquin et F. Volatron, Chimie Organique. Une approche orbitalaire, DeBoeck; 2015.
[18] Anh N.T., Orbitales frontières, InterEditions-CNRS Editions, Paris ; 1995.
[19] Jean Y., Volatron F., Structure électronique des molécules, Dunod, Paris ; 2003.
[20] Chaquin P., Manuel de Chimie théorique, Ellipses, Paris ; 2000.
[21] Rauk, A., Orbital Interaction Theory of Organic Chemistry, Jonh Wiley & Sons, New- York; 2001.
[22] Fleming, I., Frontier Orbitals and Organic Chemical Reactions, Jonh Wiley & Sons, NewYork; 1970.
[23] Fleming, I., Molecular Orbitals and Organic Chemical Reactions, Jonh Wiley & Sons, NewYork; 2009.
[24] Albright T.A., Burdett J. K., Whangbo M.-H., Orbital Interactions in Chemistry, Jonh Wiley & Sons, New- York; 1985.
[25] D. B. Lawson et J. F. Harrison, « Some Observations on Molecular Orbital Theory », Journal of Chemical Education, vol. 82, no 8, 2005, p. 1205 (DOI 10.1021/ed082p1205).
[26] Catherine E Housecroft, Alan G Sharpe, Chimie inorganique, De Boeck Superieur; 2010.
[27] Bickelhaupt F.M., Nagle J.K., Klemm W.L., Role of s-p orbital mixing in the bonding and properties of the second-period diatomic molecules, J. Phys. Chem. A, 2008, 112, p. 2437.
[28] Robinson P.J., Alexandrova A.N., Assessing the bonding properties of individual molecular orbitals, J. Phys. Chem. A, 2015, 119, p. 12862.
[29] Chaquin P., Canac Y., Lepetit C., Zargarian D., Chauvin R., Estimating local bonding/antibonding character of canonical molecular orbitals from their energy derivatives: the case of coordinating lone pair orbitals, Int. J. Quant. Chem., 2016, 116, p. 1285.
[30] Chaquin P., Fuster F., Bonding/antibonding character of “lone pair” molecular orbitals in small molecules (AH, AH2, AH3, AF3 and H2CO) from their energy derivatives; consequences for experimental data, ChemPhysChem, 2017, 18, p. 2873.
[31] Fuster F, Chaquin P., Analysis of carbon-carbon bonding in small hydrocarbons and dicarbon using dynamic orbital forces: bond energies and sigma/pi partition. Comparison with sila compounds, Int. J. Quantum Chem., 2019, 119, e25996.
[32] Chaquin P., Gutlé C., Reinhardt P., (2014) Liaison(s) chimique(s) : forces ou énergie ? En tout cas, électrostatique, L’Act. Chim., 384, p. 29.
[33] Berlin T.J., (1951) Binding regions in diatomic molecules, Chem. Phys., 19, p. 208.
[34] Averill F.W., Painter G.S., (1986) Orbital forces and chemical bonding in density-functional theory: application to first-row dimers, Phys. Rev. B, 34, p. 2088.
[35] Tal T., Katriel J., (1977) Bonding criteria for diatomic molecular orbitals and relations among them, Theoret. Chim. Acta, 46, p. 173.
[36] Lahbib Abbas, Lahcen Bih, Khalid Yamni, Abderrahim Elyahyaouy, Abdelmalik El Attaoui, Zahra Ramzi, Systematic Method for Constructing Lewis Representations, , Open Journal of Inorganic Chemistry Vol.14 No.1, January 31, 2024, DOI: 10.4236/ojic.2024.141001.
[37] Pauling L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry, 3e ed., Cornell University Press; 1960.
[38] Frey, Paul Reheard, College chemistry [archive], 3e éd., Prentice-Hall, Université de Californie; 1965.
[39] Alcock, N.W., Bonding and Structure: structural principles in inorganic and organic chemistry, Ellis Horwood Ltd; 1ère edition, New York; 1990.
[40] Werner Kutzelnigg, Einführung in die Theoretische Chemie, Weinheim, Wiley-VCH, décembre 2001, 896 p. (ISBN 3527306099).
[41] J.S. Baskin and A.H. Zewail. Freezing atoms in motion: Principles of femtochemistry and demonstration by laser spectroscopy, Journal of Chemical Education, 78:737, 2001.
[42] A.D. Bandrauk and H. Shen. Exponential split operator methods for solving coupled time dependent Schroedinger equations, Journal of Chemical Physics, 99:1185, 1993.
[43] H.-Z. Lu and A.D. Bandrauk. Moving adaptive grid methods for numerical solution of the time dependent molecular Schroedinger equation in laser fields, Journal of Chemical Physics, 115:1670, 2001.
[44] E. H. Hückel. Z. Phys., 70 :204–86, 1931.
[45] Max Wolfsberg and Lindsay Helmholz. The spectra and electronic structure of the tetrahedral ions MnO4, Cro4, and ClO4. J. Chem. Phys., 20 :837–843, 1952.
[46] R. Hoffmann. An extended hückel theory. i. hydrocarbons. J. Chem. Phys., 39 :1397–16, 1963.
[47] R. Hoffmann. Extended hückel theory. iii. compounds of boron and nitrogen. J. Chem. Phys., 40 :2474–7, 1964.
[48] R. Hoffmann. Extended hückel theory—v : Cumulenes, polyenes, polyacetylenes and Cn. Tetrahedron, 22 :521–538, 1966.
[49] D. J. Chadi. (110) surface atomic structures of covalent and ionic semiconductors. Phys. Rev.B, 19 :2074—2082, 1979.
[50] W. A. Harrison. Electronic structure and the properties of solids, W. H. Freeman ed., San Francisco; 1980.
[51] J. Friedel. The physics of metals, J. M. Ziman, Cambridge University Press, Cambridge; 1969.
Published
Issue
Section
License
Copyright (c) 2024 Lahbib Abbas , Lahcen Bih , Abdessamad Mezdar, Khalid Sellam, Ilyas Jalafi , Zahra Ramzi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.