Payment behavior model for students at a private university in Peru
DOI:
https://doi.org/10.56294/sctconf2023217Keywords:
Machine Learning, Higher Education, Data Mining, Payments, Neural NetworksAbstract
With the enactment of Law No. 29947, “Law for the Protection of the Family Economy”, students use the educational service with the payment of tuition, demonstrating a poor payment culture, failing to pay tuition until the beginning of the next semester. This motivates the university to present a state of illiquidity. The objective of the research was to develop a payment behavior classification model for students of a private university in Peru, with the purpose of predicting delinquency and compliance with payment commitments, through the implementation of strategies to improve the quality of the economic collection process. The methodology presents a research component of technological type, of propositional level, incremental innovation, the data collection was of retrospective type; with a synchronous temporal scope, because it was carried out in a short period of time, less than a year, the study population consisted of 8495 enrolled undergraduate students. The results show a classification model to predict payment behavior, using the H2O.ai platform and the R programming language, the data were obtained from computer systems, using the CRISP-DM methodology used in data science solutions. The datasets for training, validation and testing correspond to 70 %, 15 % and 15 %; obtaining the GBM Grid classification model whose performance metrics are AUC of 0,6272, AUCPR of 0,8751 and logLoss equivalent to 0,4577.
References
Chandia M, Carrasco G. Factores que inciden en la morosidad de los deudores de crédito universitario en la Universidad del Bío-Bío, Universidad del Bío-Bío, Chillán, Chile. [Tesis de Pregrado]; 2015. Disponible en: http://repobib.ubiobio.cl/jspui/handle/123456789/1508
Cornejo D, Quispe G. Aplicación del algoritmo backpropagation de redes neuronales para determinar los niveles de morosidad en los alumnos de la universidad peruana unión. Revista de Investigación Business Intelligence. 2011; 1(2). Disponible en: https://revistas.upeu.edu.pe/index.php/ri_bi/article/view/908
Dwi M, Prasetya A, Pujianto U. Technology acceptance model of student ability and tendency classification system. Bulletin of Social Informatics Theory and Application. 2018; 2(2): 47–57. Disponible en: https://doi.org/10.31763/businta.v2i2.113
Hashimoto E. Un Enfoque Metodológico Alternativo para Investigar en Educación, Universidad Autónoma de Madrid. [Tesis Doctoral]; 2013. Disponible en: http://hdl.handle.net/10486/14081
He X, Zhao K, Chu X. AutoML: A survey of the state-of-the-art. Knowledge-Based Systems. 2020; 106622. Disponible en: https://doi.org/10.1016/j.knosys.2020.106622
Kodelja Z. Is Machine Learning Real Learning? Robotisation, Automatisation, the End of Work and the Future of Education. CEPS Journal. 2019; 9(3). Disponible en: https://doi.org/10.26529/cepsj.709
Nagarajah T, Poravi G. A Review on Automated Machine Learning (AutoML) Systems. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). 2019. Disponible en: https://doi.org/10.1109/i2ct45611.2019.9033810
Pacco R. Análisis predictivo basado en redes neuronales no supervisadas aplicando algoritmo de kmedias y CRISP-DM para pronóstico de riesgo de morosidad de los alumnos en la Universidad Peruana Unión, 2015, Lima, Perú. [Tesis de Maestría]; 2015. http://hdl.handle.net/20.500.12840/203
Samuel A. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development. 1959; 44(1): 211-229. Disponible en: https://doi.org/10.1147/rd.441.0206
Tinto V. Dropout from Higher Education: A Theoretical Synthesis of Recent Research. Review of Educational Research. 1975; 45(1): 89-125. Disponible en: https://doi.org/10.2307/1170024
Truong A, Walters A, Goodsitt J, Hines K, Bruss C B, Farivar R. Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). Disponible en: https://doi.org/10.1109/ictai.2019.00209
Vakhrushev A, Ryzhkov A, Savchenko M, Simakov D, Damdinov R, Tuzhilin A. LightAutoML: AutoML Solution for a Large Financial Services Ecosystem. Choice Reviews Online. 2021; 45(02): 45–0602—45–0602. Disponible en: https://doi.org/10.5860/choice.45-0602
Wang G, Ma J. Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Systems with Applications. 2011; 38(11): 13871–13878. Disponible en: Disponible en: https://doi.org/10.1016/j.eswa.2011.04.191
Wang G, Ma J. Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Systems with Applications. 2011; 38(11): 13871–13878. Disponible en: https://doi.org/10.1016/j.eswa.2011.04.191
Xu W, Li W. Granular Computing Approach to Two-Way Learning Based on Formal Concept Analysis in Fuzzy Datasets. IEEE Transactions on Cybernetics. 2014; 46(2): 366–379. Disponible en: https://doi.org/10.1109/tcyb.2014.2361772
Zöller M. Huber M. Benchmark and Survey of Automated Machine Learning Frameworks. Journal of Artificial Intelligence Research. 2021; 70: 409–472. Disponible en: https://doi.org/10.1613/jair.1.11854
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Henry Villarreal Torres, Julio Ángeles Morales, William Joel Marín Rodriguez, Daniel Andrade Girón, Edgardo Carreño Cisneros (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.