Payment behavior model for students at a private university in Peru

Authors

DOI:

https://doi.org/10.56294/sctconf2023217

Keywords:

Machine Learning, Higher Education, Data Mining, Payments, Neural Networks

Abstract

With the enactment of Law No. 29947, “Law for the Protection of the Family Economy”, students use the educational service with the payment of tuition, demonstrating a poor payment culture, failing to pay tuition until the beginning of the next semester. This motivates the university to present a state of illiquidity.  The objective of the research was to develop a payment behavior classification model for students of a private university in Peru, with the purpose of predicting delinquency and compliance with payment commitments, through the implementation of strategies to improve the quality of the economic collection process. The methodology presents a research component of technological type, of propositional level, incremental innovation, the data collection was of retrospective type; with a synchronous temporal scope, because it was carried out in a short period of time, less than a year, the study population consisted of 8495 enrolled undergraduate students.  The results show a classification model to predict payment behavior, using the H2O.ai platform and the R programming language, the data were obtained from computer systems, using the CRISP-DM methodology used in data science solutions. The datasets for training, validation and testing correspond to 70 %, 15 % and 15 %; obtaining the GBM Grid classification model whose performance metrics are AUC of 0,6272, AUCPR of 0,8751 and logLoss equivalent to 0,4577.

References

Chandia M, Carrasco G. Factores que inciden en la morosidad de los deudores de crédito universitario en la Universidad del Bío-Bío, Universidad del Bío-Bío, Chillán, Chile. [Tesis de Pregrado]; 2015. Disponible en: http://repobib.ubiobio.cl/jspui/handle/123456789/1508

Cornejo D, Quispe G. Aplicación del algoritmo backpropagation de redes neuronales para determinar los niveles de morosidad en los alumnos de la universidad peruana unión. Revista de Investigación Business Intelligence. 2011; 1(2). Disponible en: https://revistas.upeu.edu.pe/index.php/ri_bi/article/view/908

Dwi M, Prasetya A, Pujianto U. Technology acceptance model of student ability and tendency classification system. Bulletin of Social Informatics Theory and Application. 2018; 2(2): 47–57. Disponible en: https://doi.org/10.31763/businta.v2i2.113

Hashimoto E. Un Enfoque Metodológico Alternativo para Investigar en Educación, Universidad Autónoma de Madrid. [Tesis Doctoral]; 2013. Disponible en: http://hdl.handle.net/10486/14081

He X, Zhao K, Chu X. AutoML: A survey of the state-of-the-art. Knowledge-Based Systems. 2020; 106622. Disponible en: https://doi.org/10.1016/j.knosys.2020.106622

Kodelja Z. Is Machine Learning Real Learning? Robotisation, Automatisation, the End of Work and the Future of Education. CEPS Journal. 2019; 9(3). Disponible en: https://doi.org/10.26529/cepsj.709

Nagarajah T, Poravi G. A Review on Automated Machine Learning (AutoML) Systems. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). 2019. Disponible en: https://doi.org/10.1109/i2ct45611.2019.9033810

Pacco R. Análisis predictivo basado en redes neuronales no supervisadas aplicando algoritmo de kmedias y CRISP-DM para pronóstico de riesgo de morosidad de los alumnos en la Universidad Peruana Unión, 2015, Lima, Perú. [Tesis de Maestría]; 2015. http://hdl.handle.net/20.500.12840/203

Samuel A. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development. 1959; 44(1): 211-229. Disponible en: https://doi.org/10.1147/rd.441.0206

Tinto V. Dropout from Higher Education: A Theoretical Synthesis of Recent Research. Review of Educational Research. 1975; 45(1): 89-125. Disponible en: https://doi.org/10.2307/1170024

Truong A, Walters A, Goodsitt J, Hines K, Bruss C B, Farivar R. Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). Disponible en: https://doi.org/10.1109/ictai.2019.00209

Vakhrushev A, Ryzhkov A, Savchenko M, Simakov D, Damdinov R, Tuzhilin A. LightAutoML: AutoML Solution for a Large Financial Services Ecosystem. Choice Reviews Online. 2021; 45(02): 45–0602—45–0602. Disponible en: https://doi.org/10.5860/choice.45-0602

Wang G, Ma J. Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Systems with Applications. 2011; 38(11): 13871–13878. Disponible en: Disponible en: https://doi.org/10.1016/j.eswa.2011.04.191

Wang G, Ma J. Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Systems with Applications. 2011; 38(11): 13871–13878. Disponible en: https://doi.org/10.1016/j.eswa.2011.04.191

Xu W, Li W. Granular Computing Approach to Two-Way Learning Based on Formal Concept Analysis in Fuzzy Datasets. IEEE Transactions on Cybernetics. 2014; 46(2): 366–379. Disponible en: https://doi.org/10.1109/tcyb.2014.2361772

Zöller M. Huber M. Benchmark and Survey of Automated Machine Learning Frameworks. Journal of Artificial Intelligence Research. 2021; 70: 409–472. Disponible en: https://doi.org/10.1613/jair.1.11854

Downloads

Published

2023-05-07

How to Cite

1.
Villarreal Torres H, Ángeles Morales J, Marín Rodriguez WJ, Andrade Girón D, Carreño Cisneros E. Payment behavior model for students at a private university in Peru. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2023 May 7 [cited 2025 Apr. 19];2:217. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/174