Performance of 28 mega pascal self-compacting concrete using sustainable raw materials and their influence on mechanical behavior

Authors

DOI:

https://doi.org/10.56294/sctconf2023395

Keywords:

Self-Compacting Concrete, Compression Resistance, Agricultural Waste, Rice Husk, Ichu Ash

Abstract

The increase in CO2 emissions is a global problem, which is why it is necessary to improve the mechanical properties of self-compacting concrete by replacing a percentage of the cement with the incorporation of ashes from agricultural waste. This research aims to evaluate the replacement of cement with rice husk ash and ichu straw ash, in percentages of 2 %, 4 % and 6 % and determine its influence on the fresh properties and compressive strength of self-compacting concrete considering concrete cores at different curing ages. The results showed that the compressive strength increased by 53 % and 40 % with the addition of rice husk ash. It is concluded that replacing 2 % of CCA in the CAC increases its compression resistance from days 3,7,14,21, and 28 days, being a great alternative solution for a high-strength and eco-friendly concrete. with the environment.

References

1. EFNARC. Specification and guidelines for self-compacting concrete. Reino Unido, 2023.

2. Noriega, S. & Valenzuela, A. Diseño y Control del Concreto Autocompactante en el Valle del Mantaro. Revista Científica Ingetecno, 2(1), 2015. https://doi.org/10.21503/rci.v2i1.205

3. ACI 237R-07 Serie de tecnología emergente Hormigón Autoconsolidable Informado por el Comité ACI 237, 2007.

4. Amin, M. N., Khan, K., Abu Arab, A. M., Farooq, F., Eldin, S. M., & Javed, M. F. Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material

(SCM): Optimization and hyper-tuning. Journal of Materials Research and Technology, 25, 1495–1536, 2023. https://doi.org/10.1016/j.jmrt.2023.06.006

5. Kumar, S., Rithuparna, R., Senthilkumar, R., & Bahurudeen, A. Cleaner production of waste-derived alkali activators from industrial and agricultural by-products for sustainable alkali activated binders. Construction and Building Materials, 391(131824), 131824, 2023. https://doi.org/10.1016/j.conbuildmat.2023.131824

6. Camargo, N., Abellán, J., & Fuentes, L. Use of rice husk ash as a supplementary cementitious material in concrete mix for road pavements. Journal of Materials Research and Technology, 25, 6167–6182, 2023. https://doi.org/10.1016/j.jmrt.2023.07.033

7. Rolón, B. G., & Castañeda, P. F. Mechanical resistance and corrosion of concrete added with ashes of corn, sorghum, and wheat. Cleaner Materials, 2(100028), 100028, 2021. https://doi.org/10.1016/j.clema.2021.100028

8. Ahmad, J., Arbili, MM, Alabduljabbar, H. y Deifalla, AF. Concreto elaborado con ceniza de mazorca de maíz parcialmente sustituida: una revisión. Estudios de casos en materiales de construcción, 18 (e02100), 2023. https://doi.org/10.1016/j.cscm.2023.e02100

9. Abu Bakar, H., Kudus, S., Abbas, H., Hassan, R. Kamarudin, N. Efecto de la cáscara de arroz como reemplazo del cemento en propiedades mecánicas del concreto. Revista de Ingeniería Mecánica, Vol. 20(2), 91-104, 2023.

10. Wang, P., Liu, H., Guo, H., Yu, Y., Guo, Y., Yue, G., Li, Q., & Wang, L.Study on preparation and performance of alkali-activated low carbon recycled concrete: Corn cob biomass aggregate. Journal of Materials Research and Technology, 23, 90–105, 2023. https://doi.org/10.1016/j.jmrt.2022.12.164

11. Sharma, N., Sharma, P., & Parashar, A. K. Incorporation of silica fume and waste corn cob ash in cement and concrete for sustainable environment. Materials Today: Proceedings, 62, 4151–4155, 2022. https://doi.org/10.1016/j.matpr.2022.04.677

12. Gencel, O., Nodehi, M., Yavuz Bayraktar, O., Kaplan, G., Benli, A., Gholampour, A., & Ozbakkaloglu, T. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Construction and Building Materials, 326(126861), 126861, 2022. https://doi.org/10.1016/j.conbuildmat.2022.126861

13. Santhosh, K. G., Subhani, S. M., & Bahurudeen, A. Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete. Journal of Cleaner Production, 354(131736), 131736, 2022. https://doi.org/10.1016/j.jclepro.2022.131736

14. Wasim, M., Abadel, A., Abu Bakar, B. H., & Alshaikh, I. M. H. Future directions for the application of zero carbon concrete in civil engineering – A review. Case Studies in Construction Materials, 17(e01318), e01318, 2022. https://doi.org/10.1016/j.cscm.2022.e01318

15. Muhammad. A., Kaffayatullah, K., Abdullah, A., Furqan, M., Eldin, J., Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): Optimization and hyper-tuning, Journal of Materials Research and Technology, Volume 25, 2023, Pages 1495-1536, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2023.06.006.

16. El Nadoury, W. Hormigón ecológico utilizando subproductos como sustitución parcial del cemento. Fronteras en materiales, Vol. 9, 2022. https://doi.org/10.3389/fmats.2022.1043037

17. Kočí, V., Petříková, M., Fořt, J., Fiala, L. y Černý, R. Preparación de materiales autocalentables activados con álcalis utilizando productos de desecho industriales. Revista de Producción Más Limpia, 260 (121116), 2020. https://doi.org/10.1016/j.jclepro.2020.121116

18. Zandi, P., Rahmani, M., Khanian, M., & Mosavi, A. Agricultural risk management using fuzzy TOPSIS analytical hierarchy process (AHP) and failure mode and effects analysis (FMEA). Agriculture, 10(11), 504, 2020. https://doi.org/10.3390/agriculture10110504

19. Ahmad, J., Arbili, M., Alabduljabbar, H., & Deifalla, A. Concrete made with partially substitution corn cob ash: A review. Case Studies in Construction Materials, 18(e02100), e02100, 2023. https://doi.org/10.1016/j.cscm.2023.e02100

20. Șerbănoiu, A., Grădinaru, C., Muntean, R., Cimpoeșu, N., & Șerbănoiu, B. Corn cob ash versus sunflower stalk ash, two sustainable raw materials in an analysis of their effects on the concrete properties. Materials, 15(3), 868, 2022. https://doi.org/10.3390/ma15030868

21. ASTM C33/C33M-18, Especificación para Agregados Pétreos para Mezclas de Concreto, 2023.

22. ASTM C117, Standard Test Method for Sieve Materials Greater than 75 μm (No. 200) in Mineral Aggregates by Washing, 2017.

23. ASTM C566, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying, 2019.

24. ASTM C 136, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, 2015.

25. NTP 334.009, Norma Técnica Peruana de Requisitos de Cementos Portland, 2005.

26. ASTM C29 / C29M, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, 2017.

27. ASTM D2419, Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate, 2019.

28. ASTM C128, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, 2015.

29. ASTM C127, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, 2015.

30. ASTM C150, Standard Specification for Portland Cement, 2012.

31. ASTM C494/C494M-17, Standard Specification for Chemical Admixtures for Concrete, 2020.

32. ASTM C143/C143M-12, Standard Test Method for Slump of Hydraulic-Cement Concrete, 2015.

33. ASTM C360-92, Método de prueba estándar para la penetración de bolas en concreto de cemento hidráulico recién mezclado, 2016

34. ASTM C1621/C1621M-17, Standard test method for passing ability of self-consolidating concrete by J-ring, 2023.

35. ASTM C1437-20 Standard test method for flow of hydraulic cement mortar. (2020).

36. Sua-iam, G., Sokrai, P., & Makul, N. (2016). Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 125, 1028–1034. https://doi.org/10.1016/j.conbuildmat.2016.09.002

37. ASTM C702-18Standard practice for reducing samples of aggregate to testing size. (2018).

38. Peralta. P., Crónica del desastre: el terremoto de 1868 en Moquegua. Sincretismo – revista de Divulgación Científica. Vol. 02. N 001. Pag. 01. https://revistas.unam.edu.pe/index.php/sincretismo/article/view/12/12.

39. Del Carpio. F., Solo. A., Analysis of the magnitude of the seismic waves energy transferred to the foundation of a building. Revista Ingeniería de Construcción. RIC. Vol 37 N. 2 2022, pag. 1.

40. Vargas. A., Del Carpio. F., Villa. C., Medina. R., Vargas. N. Aplicación de la vibración ambiental y la vulnerabilidad física de la ciudad de Moquegua. Sincretismo – Revista de Divulgación Científica. Vol 01, N 002. Pag 42. https://revistas.unam.edu.pe/index.php/sincretismo/article/view/24/22.

41. Del Carpio. F., Silvana. B. Management model with processes to identify seismic vulnerability in housing. Revista Ingeniería de Construcción. RIC. Vol 36 N. 3 2021, pag. 1. https://www.scopus.com/record/display.uri?eid=2-s2.0-85173757314&origin=inward&txGid=bb1213bdf093af5058702b721d8fdf4a

Downloads

Published

2023-09-29

How to Cite

1.
Colunche Idrogo AN, Mayta Tanta LM, Flores Quispe AC, Del Carpio Delgado F. Performance of 28 mega pascal self-compacting concrete using sustainable raw materials and their influence on mechanical behavior. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2023 Sep. 29 [cited 2025 Apr. 19];2:395. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/313