Machine learning for the improvement of adaptive learning in university education
DOI:
https://doi.org/10.56294/sctconf2023473Keywords:
Artificial Intelligence, Adaptive Learning, Education, Machine Learning, Academic PerformanceAbstract
AI is increasingly being introduced in the field of education and the educational system, with this the approach to the personalization of education according to the needs of each student. This review aims to analyze the impact of adaptive learning with artificial intelligence and machine learning techniques in improving learning in university education by identifying the main applications, benefits and challenges of this technology. The Scopus database was extensively searched, where 22 of 125 studies found met the inclusion criteria. The results showed that the classification of students according to their type of perception of educational content and the use of written text analysis as a basis for this classification were proposed as strategies to improve the quality and personalization of education. Likewise, the usefulness of machine learning algorithms based on SVM to predict students' final grades and detect possible learning difficulties was highlighted. It was concluded that early detection of learning difficulties, personalization of learning and consideration of demographic and gender variables to improve students' academic performance provide a solid basis for the design of effective educational strategies and highlight the potential of AI and ML to transform the educational sector.
References
1. Aguirre M, Peñafiel S, Anlage A, Brown E, Enriquez-Chavez C, Paredes I. Comparative Analysis of Classification Models for Predicting Cancer Stage in a Chilean Cancer Center. Data and Metadata 2023;2:123 123. https://doi.org/10.56294/dm2023123.
2. Álvarez YB, Martínez AB, Rodríguez EM, Morales-Peralta E, Domínguez NG, Méndez-Rosado LA. Inusual ganancia en 9qh y su posible influencia en los trastornos reproductivos. A propósito de un caso. Salud, Ciencia y Tecnología - Serie de Conferencias 2023;2:339 339. https://doi.org/10.56294/sctconf2023339.
3. Arellano JF, Pineda EA, Ponce ML, Zarco A, Aburto IA, Arellano DU. Academic stress in first year students in the career of Medical Surgeon of the Facultad de Estudios Superiores Zaragoza. UNAM, 2022. Seminars in Medical Writing and Education 2023;2:37 37. https://doi.org/10.56294/mw202337.
4. Auza-Santivañez JC, Perez JS, Lara YD, León DO, Condori-Villca N, Loaces JPA. Valor predictivo de la escala CONUT en la detección precoz del riesgo nutricional y su relación con la mortalidad en pacientes críticos. Salud, Ciencia y Tecnología 2023;3:339 339. https://doi.org/10.56294/saludcyt2023339.
5. B. Nassoura, “Instituciones Educativas: Una Revisión Sistemática”. [En línea]. Disponible en: http://www.webology.orgTraducidodelinglésalespañol- www.onlinedoctranslator.com
6. Bautista CAC, Carpio V del PC. Conocimientos y actitudes en adolescentes frente a enfermedades de transmisión sexual. Salud, Ciencia y Tecnología 2023;3:344 344. https://doi.org/10.56294/saludcyt2023344.
7. C. Mamédio, C. Santos, C. Andrucioli De Mattos Pimenta, M. Roberto, y C. Nobre, “Online ESTRATEGIA PICO PARA LA CONSTRUCCIÓN DE LA PREGUNTA DE INVESTIGACIÓN Y LA BÚSQUEDA DE EVIDENCIAS A ESTRATÉGIA PICO PARA A CONSTRUÇÃO DA PERGUNTA DE PESQUISA E BUSCA DE EVIDÊNCIAS”. [En línea]. Disponible en: www.eerp.usp.br/rlaeArtigodeAtualização
8. C. Schardt, M. B. Adams, T. Owens, S. Keitz, y P. Fontelo, “Utilization of the PICO framework to improve searching PubMed for clinical questions”, BMC Med Inform Decis Mak, vol. 7, 2007, doi: 10.1186/1472-6947-7-16.
9. C. So, P. Chan, S. C. Wong, A. K. Wong, H. Tsang, y H. C. B. Chan, “Some pattern recognitions for a recommendation framework for higher education students’ generic competence development using machine learning”, J Technol Sci Educ, vol. 13, núm. 1, p. 104, ene. 2023, doi: 10.3926/jotse.1707.
10. Cantaro JCC, Tello JDLCH, Ruiz GEZ, Claudio BAM. Leadership styles and organizational climate among employees in Lima, Peru. Health Leadership and Quality of Life 2023;2:36 36. https://doi.org/10.56294/hl202336.
11. Castillo-González W. The importance of human supervision in the use of ChatGPT as a support tool in scientific writing. Metaverse Basic and Applied Research 2023;2:29 29. https://doi.org/10.56294/mr202329.
12. D. Moher et al., “Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement”, PLoS Medicine, vol. 6, núm. 7. julio de 2009. doi: 10.1371/journal.pmed.1000097.
13. D. Orrego Granados, J. Ugalde, R. Salas, R. Torres, y J. L. López-Gonzales, “Visual- Predictive Data Analysis Approach for the Academic Performance of Students from a Peruvian University”, Applied Sciences (Switzerland), vol. 12, núm. 21, nov. 2022, doi: 10.3390/app122111251.
14. Dávila-Morán RC, Castillo-Sáenz RA, Vargas-Murillo AR, Dávila LV, García-Huamantumba E, García-Huamantumba CF, et al. Aplicación de Modelos de Aprendizaje Automático en la Detección de Fraudes en Transacciones Financieras. Data and Metadata 2023;2:109 109. https://doi.org/10.56294/dm2023109.
15. E. Alhazmi y A. Sheneamer, “Early Predicting of Students Performance in Higher Education”, IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3250702.
16. E. Mousavinasab, N. Zarifsanaiey, S. R. Niakan Kalhori, M. Rakhshan, L. Keikha, y M. Ghazi Saeedi, “Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods”, Interactive Learning Environments, vol. 29, núm. 1, pp. 142–163, ene. 2021, doi: 10.1080/10494820.2018.1558257.
17. F. Ouatik, M. Erritali, F. Ouatik, y M. Jourhmane, “Predicting Student Success Using Big Data and Machine Learning Algorithms”, International Journal of Emerging Technologies in Learning, vol. 17, núm. 12, pp. 236–251, 2022, doi: 10.3991/ijet.v17i12.30259.
18. Fernández CJ. El caso Wyclif en la Inglaterra medieval tardía: un ejemplo de interacción entre filosofía, política, crítica social y lengua. Salud, Ciencia y Tecnología - Serie de Conferencias 2023;2:70 70. https://doi.org/10.56294/sctconf202370.
19. G. Zhikharev, I. A. Deeney, S. V. Igrunova, D. A. Klyuchnikov, y A. Y. Frolova, “To the development of intelligent adaptive learning systems”, en Journal of Physics: Conference Series, IOP Publishing Ltd, oct. 2021. doi: 10.1088/1742-6596/2060/1/012012.
20. García-García I, González-García S, Coello-Caballero H, Garzón-Cutiño L, Hernández-Cuétara L. Analysis of scientific publications by professors of a Faculty of Medical Sciences. Data and Metadata 2023;2:118 118. https://doi.org/10.56294/dm2023118.
21. Goire YE, Durán AGP, Arias MC, Flores CR, Muñoz EEC. Metrics on Internal Medicine from the journal Gaceta Médica Estudiantil. Seminars in Medical Writing and Education 2023;2:36 36. https://doi.org/10.56294/mw202336.
22. Gonzalez-Argote D, Gonzalez-Argote J, Machuca-Contreras F. Blockchain in the health sector: a systematic literature review of success cases. Gamification and Augmented Reality 2023;1:6 6. https://doi.org/10.56294/gr20236.
23. Gonzalez-Argote D, Gonzalez-Argote J. Generation of graphs from scientific journal metadata with the OAI-PMH system. Seminars in Medical Writing and Education 2023;2:43 43. https://doi.org/10.56294/mw202343.
24. Gonzalez-Argote J, Gonzalez-Argote D. 10 Best practices in Immersive Learning Design and 10 points of connection with the Metaverse: a point of view. Metaverse Basic and Applied Research 2023;2:7 7. https://doi.org/10.56294/mr20237.
25. Gonzalez-Argote J. A Bibliometric Analysis of the Studies in Modeling and Simulation: Insights from Scopus. Gamification and Augmented Reality 2023;1:5 5. https://doi.org/10.56294/gr20235.
26. Gonzalez-Argote J. Analyzing the Trends and Impact of Health Policy Research: A Bibliometric Study. Health Leadership and Quality of Life 2023;2:28 28. https://doi.org/10.56294/hl202328.
27. H. Xie, H. C. Chu, G. J. Hwang, y C. C. Wang, “Trends and development in technology- enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017”, Comput Educ, vol. 140, oct. 2019, doi: 10.1016/j.compedu.2019.103599.
28. Henao C, Lis-Gutiérrez JP, Lis-Gutiérrez M. Desigualdad en el acceso a la atención sanitaria: Una perspectiva latinoamericana. Salud, Ciencia y Tecnología 2023;3:355 355. https://doi.org/10.56294/saludcyt2023355.
29. J. Huang, S. Saleh, y Y. Liu, “A review on artificial intelligence in education”, Academic Journal of Interdisciplinary Studies, vol. 10, núm. 3, pp. 206–217, may 2021, doi: 10.36941/AJIS-2021-0077.
30. Jimenez XC, Vargas JC, Medina PRSO, Victoria SM. Death: between the individual and the social. Community and Interculturality in Dialogue 2023;3:118 118. https://doi.org/10.56294/cid2023118.
31. L. Al-Alawi, J. Al Shaqsi, A. Tarhini, y A. S. Al-Busaidi, “Using machine learning to predict factors affecting academic performance: the case of college students on academic probation”, Educ Inf Technol (Dordr), 2023, doi: 10.1007/s10639-023-11700-0.
32. L. D. I. Acosta y J. E. R. Polo, “Identification of factors that affect the academic performance of high school students in Peru through a machine learning algorithm”, en Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, Latin American and Caribbean Consortium of Engineering Institutions, 2021. doi: 10.18687/LACCEI2021.1.1.68.
33. Leon E, Rodriguez C, Martínez MDC, Ron M. Hearing injuries due to atmospheric pressure changes in air and water survival training instructors. Health Leadership and Quality of Life 2023;2:39 39. https://doi.org/10.56294/hl202339.
34. Lichtensztejn M, Benavides M, Galdona C, Canova-Barrios CJ. Knowledge of students of the Faculty of Health Sciences about Music Therapy. Seminars in Medical Writing and Education 2023;2:35 35. https://doi.org/10.56294/mw202335.
35. M. Basitere, E. Rzyankina, y P. Le Roux, “Reflection on Experiences of First-Year Engineering Students with Blended Flipped Classroom Online Learning during the COVID- 19 Pandemic: A Case Study of the Mathematics Course in the Extended Curriculum Program”, Sustainability (Switzerland), vol. 15, núm. 6, mar. 2023, doi: 10.3390/su15065491.
36. M. Methley, S. Campbell, C. Chew-Graham, R. McNally, y S. Cheraghi-Sohi, “PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews”, BMC Health Services Research, vol. 14, núm. 1. BioMed Central Ltd., 2014. doi: 10.1186/s12913-014-0579-0.
37. M. N. Yakubu y A. M. Abubakar, “Applying machine learning approach to predict students’ performance in higher educational institutions”, Kybernetes, vol. 51, núm. 2, pp. 916–934, feb. 2022, doi: 10.1108/K-12-2020-0865.
38. M. Yağcı, “Educational data mining: prediction of students’ academic performance using machine learning algorithms”, Smart Learning Environments, vol. 9, núm. 1, dic. 2022, doi: 10.1186/s40561-022-00192-z.
39. Mendoza PT, Pérez GH, Rosales LM, Rosado LAM. Cromosoma 22 en anillo en paciente con trastorno del neurodesarrollo. Salud, Ciencia y Tecnología - Serie de Conferencias 2023;2:345 345. https://doi.org/10.56294/sctconf2023345.
40. Milián YF. Diseño de curso de superación de postgrado sobre Nefrología Neonatal. Community and Interculturality in Dialogue 2023;3:85 85. https://doi.org/10.56294/cid202385.
41. Morgner MI, Djament L. Impact of Preventive and Mandatory Social Isolation in the control of type I diabetes in adults in the Buenos Aires Metropolitan Area. Community and Interculturality in Dialogue 2023;3:82 82. https://doi.org/10.56294/cid202382.
42. Nahi HA, Hasan MA, Lazem AH, Alkhafaji MA. Securing Virtual Architecture of Smartphones based on Network Function Virtualization. Metaverse Basic and Applied Research 2023;2:37 37. https://doi.org/10.56294/mr202337.
43. O. Hamal, N. E. El Faddouli, M. H. Alaoui Harouni, y J. Lu, “Artificial Intelligent in Education”, Sustainability (Switzerland), vol. 14, núm. 5, mar. 2022, doi: 10.3390/su14052862.
44. Paredes FFO, Zuta MEC, Rios SWR, Achachagua AJY. Decision-Making in Tourism Management and its Impact on Environmental Awareness. Data and Metadata 2023;2:85 85. https://doi.org/10.56294/dm202385.
45. Peralta EM. Aplicación de los avances genéticos al diagnóstico médico. Salud, Ciencia y Tecnología - Serie de Conferencias 2023;2:338 338. https://doi.org/10.56294/sctconf2023338.
46. Pérez-Hernández G, Téllez NR, C JJR, S LGL, L OG. Use of videos as a method of learning in social service projects. Community and Interculturality in Dialogue 2023;3:100 100. https://doi.org/10.56294/cid2023100.
47. Quintana-Honores M, Corvalán P, Gironda-Gurán J. Family integration and skin-to-skin contact with the newborn favors the recovery of the hospitalized patient: experiences of its implementation in an Obstetric Critical Care Unit. Health Leadership and Quality of Life 2023;2:33 33. https://doi.org/10.56294/hl202333.
48. Romero-Carazas R. Prompt lawyer: a challenge in the face of the integration of artificial intelligence and law. Gamification and Augmented Reality 2023;1:7 7. https://doi.org/10.56294/gr20237.
49. Ruiz-Sáez P, Velásquez-Oberreuter L, Zúñiga NT, Acevedo ML. Implementación de dispositivos tecnológicos usados por terapeutas ocupacionales en la rehabilitación de extremidad superior posterior a un accidente cerebro vascular. Salud, Ciencia y Tecnología 2023;3:694 694. https://doi.org/10.56294/saludcyt2023694.
50. S. Alraddadi, S. Alseady, y S. Almotiri, “Prediction of students academic performance utilizing hybrid teaching-learning based feature selection and machine learning models”, en 2021 International Conference of Women in Data Science at Taif University, WiDSTaif 2021, Institute of Electrical and Electronics Engineers Inc., mar. 2021. doi: 10.1109/WIDSTAIF52235.2021.9430248.
51. S. Oreshin et al., “Implementing a Machine Learning Approach to Predicting Students Academic Outcomes”, en ACM International Conference Proceeding Series, Association for Computing Machinery, oct. 2020, pp. 78–83. doi: 10.1145/3437802.3437816.
52. S. Wang et al., “When adaptive learning is effective learning: comparison of an adaptive learning system to teacher-led instruction”, Interactive Learning Environments, 2020, doi: 10.1080/10494820.2020.1808794.
53. Saltos GDC, Oyarvide WV, Sánchez EA, Reyes YM. Análisis bibliométrico sobre estudios de la neurociencia, la inteligencia artificial y la robótica: énfasis en las tecnologías disruptivas en educación. Salud, Ciencia y Tecnología 2023;3:362 362. https://doi.org/10.56294/saludcyt2023362.
54. Sánchez RM. Transformando la educación online: el impacto de la gamificación en la formación del profesorado en un entorno universitario. Metaverse Basic and Applied Research 2023;2:47 47. https://doi.org/10.56294/mr202347.
55. Sánchez RM. Vídeos 360o como herramienta de entrenamiento de habilidades sociales con alumnado TEA. Metaverse Basic and Applied Research 2023;2:34 34. https://doi.org/10.56294/mr202334.
56. Torres LPL. Photographic images of indigenous peoples in contemporary Chilean poetry. Community and Interculturality in Dialogue 2023;3:76 76. https://doi.org/10.56294/cid202376.
57. Valles-Coral M, Lazo-Bartra U, Pinedo L, Navarro-Cabrera JR, Salazar-Ramírez L, Ruiz-Saavedra F, et al. Algoritmo no supervisado para clasificar niveles de riesgo de inmigración. Data and Metadata 2023;2:98 98. https://doi.org/10.56294/dm202398.Velasco ASD, Ccama FLM, Claudio BAM, Ruiz GEZ. Transformational Leadership as a Driver of Business Success: A Case Study in Caquetá. Health Leadership and Quality of Life 2023;2:37 37. https://doi.org/10.56294/hl202337.
58. Zayas ND, Martínez YEV, Hernández DQ, Ramírez MB. Diagnóstico prenatal de Hiperplasia adrenal congénita: presentación de un caso. Salud, Ciencia y Tecnología - Serie de Conferencias 2023;2:164 164. https://doi.org/10.56294/sctconf2023164.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Fabrizzio Jara-Abanto, Luis Velasquez-Medina, Brian Meneses-Claudio (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.