Evaluating the immunogenic potential of BAX protein isoforms as therapeutic targets in oncology: brief report

Authors

DOI:

https://doi.org/10.56294/sctconf2023587

Keywords:

BAX Isoforms, Targeted Therapy, Precision Medicine

Abstract

Through a methodical approach that combines bioinformatics and immunological analysis, detailed genetic sequencing and structural analysis of seven BAX isoforms were conducted. Using databases such as NCBI and Uniprot, and algorithms for sequence alignment and structural predictions, promising features in specific isoforms were identified. Tools like BCPREDS and the Immune Epitope Database helped evaluate the immunogenic potential by mapping epitopes. The results highlighted that isoforms such as BAX-alpha and BAX-gamma have high immunogenic capacities, making them candidates for the development of targeted vaccines or as direct therapeutic agents. Structural analyses suggested that some isoforms have the capability to integrate into cell membranes and alter signaling pathways, inducing apoptosis selectively in cancer cells. In summary, this study underscores the importance of BAX isoforms in the evolution of cancer therapy, offering more specific treatment approaches with lower toxicity. These findings encourage a move towards precision medicine in oncology, personalizing treatments based on molecular and genetic profiles to optimize therapeutic efficacy and reduce adverse effects, promising to improve outcomes for patients.

References

1. Trapani D, Ginsburg O, Fadelu T, Lin NU, Hassett M, Ilbawi AM, et al. Global challenges and policy solutions in breast cancer control. Cancer Treat Rev. 2022;104:102339.

2. National Cancer Institute. Estadísticas del cáncer - NCI [Internet]. 2022 [cited 2022 Jul 7]. Available from: https://www.cancer.gov/espanol/cancer/naturaleza/estadisticas

3. Benson JR, Jatoi I. The global breast cancer burden. Future oncology. 2012;8(6):697–702.

4. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.

5. Moo TA, Sanford R, Dang C, Morrow M. Overview of breast cancer therapy. PET Clin. 2018;13(3):339–54.

6. Bhushan A, Gonsalves A, Menon JU. Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics. 2021;13(5):723.

7. Burguin A, Diorio C, Durocher F. Breast cancer treatments: updates and new challenges. J Pers Med. 2021;11(8):808.

8. Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer. Mol Med Rep. 2019;19(1):23–9.

9. Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis. 2023;28(1):20–38.

10. Sharma A, Boise LH, Shanmugam M. Cancer metabolism and the evasion of apoptotic cell death. Cancers (Basel). 2019;11(8):1144.

11. Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 2021;1–22.

12. Mishra AP, Salehi B, Sharifi-Rad M, Pezzani R, Kobarfard F, Sharifi-Rad J, et al. Programmed cell death, from a cancer perspective: an overview. Mol Diagn Ther. 2018;22:281–95.

13. Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol. 2021;18(11):804–23.

14. Jan R. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9(2):205.

15. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417.

16. Stevens M, Oltean S. Modulation of the apoptosis gene Bcl-x function through alternative splicing. Front Genet. 2019; 10:479080.

17. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10(3):177.

18. Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113.

19. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363.

20. Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLoS Comput Biol. 2019;15(12):e1007485.

21. Kawiak A, Kostecka A. Regulation of Bcl-2 family proteins in estrogen receptor-positive breast cancer and their implications in endocrine therapy. Cancers (Basel). 2022;14(2):279.

22. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–40.

23. Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel). 2023;15(20):4957.

24. BCL2 - Apoptosis regulator Bcl-2 - Homo sapiens (Human) | UniProtKB | UniProt [Internet]. [cited 2023 Feb 14]. Available from: https://www.uniprot.org/uniprotkb/P10415/entry

25. Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2021;1876(1):188569.

26. Penninger J, Schramek D. Breast cancer therapeutics. Google Patents; 2018.

27. Makhoul I, Atiq M, Alwbari A, Kieber-Emmons T. Breast cancer immunotherapy: An update. Breast Cancer (Auckl). 2018;12:1178223418774802.

28. Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34.

29. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535.

30. Vahedifard F, Hassani S, Afrasiabi A, Esfe AM. Artificial intelligence for radiomics; diagnostic biomarkers for neuro-oncology. World Journal of Advanced Research and Reviews. 2022;14(3):304–10.

31. Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron. 2019;141:111416.

32. Wang J, Ma G, Li M, Han X, Xu J, Liang M, et al. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Molecular Therapy-Nucleic Acids. 2020;21:954–64.

33. Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer. 2020;11(15):4474–94.

34. Pallerla S, Abdul A ur RM, Comeau J, Jois S. Cancer vaccines, treatment of the future: With emphasis on her2-positive breast cancer. Int J Mol Sci. 2021;22(2):779.

Downloads

Published

2023-12-23

How to Cite

1.
Salazar-Garcés LF, Velastegui-Hernandez DC, Leiva Suero LE. Evaluating the immunogenic potential of BAX protein isoforms as therapeutic targets in oncology: brief report. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2023 Dec. 23 [cited 2025 Apr. 30];2:587. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/489