Flow Patterns Modeling over Spillway: Review Study
DOI:
https://doi.org/10.56294/sctconf2024858Keywords:
Hydraulic Modeling, Numerical Models, Ogee Spillway, Physical Models, Scale Effects.Abstract
A spillway dam, constructed concurrently with concrete or masonry, is a vital infrastructure designed to provide the controlled release of surplus water that surpasses the dam's storage capacity. Since the Ogee spillway is among the best and most well-known worldwide, it deserves study. Weir flow, inertia, and gravity are crucial in many open-channel applications. Consequently, hydraulic performance data between model and prototype structures are commonly scaled using Froude similitude. As the upstream head decreases in a weir flow, the surface tension and viscosity forces become more important, perhaps to the point where Froude scaling fails to achieve complete model-prototype similarity. Size-scale effects are responsible for various alterations to the head-discharge connection, the nappe trajectory, and air entrainment. Hydraulic parameters were explored in this work utilizing Flow3D software to find weir geometry optimization using the CFD method. In addition, this study attempted to evaluate flow on various parts of crested weirs in three different models
References
1. Chinnarasri, C., Kositgittiwong, D., Julien, P.Y., 2014. Model of flow over spillways by computational fluid dynamics. Proc. Inst. Civ. Eng. - Water Manag. 167, 164–175. https://doi.org/10.1680/wama.12.00034.
2. Imanian, H., Mohammadian, A., 2019. Numerical simulation of flow over ogee crested spillways under high hydraulic head ratio. Eng. Appl. Comput. Fluid Mech. 13, 983–1000. https://doi.org/10.1080/19942060.2019.1661014
3. James, C.S., 2020. Hydraulic Structures, Hydraulic Structures. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-34086-5
4. Peltier, Y., Dewals, B., Archambeau, P., Pirotton, M., Erpicum, S., 2018. Pressure and velocity on an ogee spillway crest operating at high head ratio: Physical model measurements and validation. J. Hydro-environment Res. 19, 128–136. https://doi.org/10.1016/j.jher.2017.03.002
5. Reese, A.J., Maynord, S.T., 1987. Design of Spillway Crests. J. Hydraul. Eng. 113, 476–490. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(476)
6. Roushangar, K., Foroudi, A., Saneie, M., 2019. Influential parameters on the submerged discharge capacity of converging ogee spillways based on physical model study and machine learning-based modeling. J. Hydroinformatics 21, 474–492. https://doi.org/10.2166/hydro.2019.120
7. Ammar H.K, Ahmad I.R, 2021. Study the Numerical Modeling of Flow Patterns over Spillway.
8. Yusuf, F., Micovic, Z., 2020. Prototype-Scale Investigation of Spillway Cavitation Damage and Numerical Modeling of Mitigation Options. J. Hydraul. Eng. 146, 04019057. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001671
9. Ho, D.K.H., Riddette, K.M., 2010. Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia. Aust. J. Civ. Eng. 6, 81–104. https://doi.org/10.1080/14488353.2010.11463946
10. Kobus, H.E. (Ed.) (1980). Hydraulic modeling. Hamburg: Verlag Paul Parey.
11. Ettema, R., Arndt, R., Roberts, P., & Wahl, T. (2000). Hydraulic modeling : Concepts and practice. Reston, VI: American Society of Civil Engineers ASCE.
12. Novak, P., Guinot, V., Jeffrey, A., & Reeve, D.E. (2010). Hydraulic modeling : an introduction : principles, methods, and applications. London: Spon Press.
13. Pfister, M., Battisacco, E., De Cesare, G., & Schleiss, A.J. (2013). Scale effects related to the rating curve of cylindrically crested Piano Key weirs. In S. Erpicum, F. laugier, M.
14. Matthew, G. (1991). Higher order, one-dimensional equations of potential flow in open channels. ICE Proceedings 1991(2), 187–201.
15. Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research 49(3), 293–306.
16. Lempérière F. & Ouamane, A. (2003). The Piano Key Weir: a new cost-effective solution for spillways. Hydropower & Dams, 5, 144-149.
17. Machiels, O., Erpicum, S., Dewals, B.J., Archambeau, P. & Pirotton, M. (2011). Experimental observation of flow characteristics over a Piano Key Weir. Journal of Hydraulic Research 49(3), 359-366.
18. Leite Ribeiro, M., Bieri, M., Boillat, J.-L., Schleiss, A., Singhal, G. & Sharma, N. (2012a). Discharge capacity of Piano Key Weirs. Journal of Hydraulic Engineering (ASCE), 138, 199-203.
19. Machiels, O., Pirotton, M., Archambeau, P., Dewals, B.J. & Erpicum, S. (2014). Experimental parametric study and design of Piano Key Weirs. Journal of Hydraulic Research 52(3), 326-335.
20. Pfister, M., Erpicum, S., Machiels, O., Schleiss, A. & Pirotton, M. (2012). Discharge coefficient for free and submerged flow over Piano Key Weirs. Journal of Hydraulic Research 50(6), 642-643.
21. Leite Ribeiro, M., Pfister, M., Schleiss, A. & Boilat, J.-L. (2012b). Hydraulic design of type Piano Key Weirs. Journal of Hydraulic Research 50(4), 400-408.
22. Assim M.L, Ammar H.K, Atheer S.A 2022. Study the modeling of the effects of hydraulic force on strain in hydraulic structures using ANN.
23. Kharagpur. (N.D.). "Hydraulic Structures for Flow Diversion and Storage". Version 2 CE IIT.
24. Mays, L.W., 2010. Water resources engineering. John Wiley & Sons.
25. Coleman, H.W., Wei, C.Y., Lindell, J.E., 2004. Hydraulic design of spillways. Hydraul. Des. Handb. 17–41.
26. Noamam, Z.T., 2014. Effect of Al-Massad dam spillway location on the hydraulic Properties of the spillway.
27. Assim M.L, Ammar H.K, Atheer S.A 2021. Study the Modelling of Flow Patterns over Spillway with CFD.
28. Ho, D.K.H., Boyes, K.M., Donohoo, S.M., 2001. Investigation of spillway behavior under increased maximum flood by computational fluid dynamics technique, in 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia.
29. Houghtalen, Robert J, A Osman, and Ned H C Hwang. 2016. Fundamentals of Hydraulic Engineering Systems. Prentice Hall New York, NY.
30. Assim M.L, Ammar H.K, Atheer S.A 2021. Study the hydrodynamic behavior of Haditha dam spillway under different conditions.
31. Erpicum, S., Tullis, B.P., Lodomez, M., Archambeau, P., Dewals, B.J., Pirotton, M., 2016. Scale effects in physical piano key weirs models. J. Hydraul. Res. 54, 692–698. https://doi.org/10.1080/00221686.2016.1211562
32. Al-Qadami, E.H.H., Abdurrasheed, A.S., Mustaffa, Z., Yusof, K.W., Malek, M.A., Ghani, A.A., 2019. Numerical modeling of flow characteristics over the sharp-crested triangular hump. Results Eng. 4, 100052. https://doi.org/10.1016/j.rineng.2019.100052
33. Fais, L.M.C.F., Genovez, A.I.B., 2009. Discharge Rating Curve and Scale Effects Correction in Morning Glory Spillways, in Advances in Water Resources and Hydraulic Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 2041–2046. https://doi.org/10.1007/978-3-540-89465-0_350
34. Salazar, F., San-Mauro, J., Celigueta, M.Á., Oñate, E., 2020. Shockwaves in spillways with the particle finite element method. Comput. Part. Mech. 7, 87–99. https://doi.org/10.1007/s40571-019-00252-1
35. UÇAR, M., KUMCU, Ş.Y., 2018. Comparison Of Physical Modeling And Cfd Simulation Of Flow Over Spillway In The Arkun Dam.
36. Yildiz, A., Yarar, A., Kumcu, S.Y., Marti, A.I., 2020. Numerical and ANFIS modeling of flow over an ogee-crested spillway. Appl. Water Sci. 10, 90. https://doi.org/10.1007/s13201-020-1177-4
37. Mohammed, J.R., Noori, B.M.A., Hussein, I.A., 2017. Modeling of The Hydraulic Performance of Ogee Spillway Using Computational Fluid Dynamics (CFD). J. Duhok Univ. 638–653.
38. Zeng, J., Zhang, L., Ansar, M., Damisse, E., González-Castro, J.A., 2017. Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. II: Framework for Planning, Data Assessment, and Flow Rating. J. Irrig. Drain. Eng. 143, 04016073. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001113.
39. Sarwar, M.K., Ahmad, I., Chaudary, Z.A., Mughal, H.-U.-R., 2020. Physical model and numerical studies on orifice spillway aerator of Bunji Dam. J. Chinese Inst. Eng. 43, 27–36. https://doi.org/10.1080/02533839.2019.1676652
40. Maliki, A.Y., Musa, M.A., Ahmad, M.F., Zamri, I., Omar, Y., 2017. Comparison of numerical and physical model results for overtopping discharge of the OBREC wave energy converter. J. Eng. Sci. Technol 12, 1337–1353.
41. Runchal, A.K., 2012. The future of CFD and the CFD of the future. Comput. Therm. Sci. An Int. J. 4.
42. Al-Hashimi, S.A.M., Huda M. Madhloom, Rasul M. Khalaf, Thameen N. Nahi, Nadhir A. Al-Ansari, 2017. Flow over Broad Crested Weirs: Comparison of 2D and 3D Models. J. Civ. Eng. Archit. 11, 769–779. https://doi.org/10.17265/1934-7359/2017.08.005
43. Ammar H.K, Ahmad I.R, 2020. Performance Study of Fluent-2D and Flow-3D Platforms in the CFD Modeling of a Flow Pattern Over Ogee Spillway.
44. Huang, W., Yang, Q. and Xiao, H. 2009. CFD modeling of scale effects on turbulence flow and scour around bridge piers. Computers & Fluids, 38(5), pp.1050-1058.
45. Aldaş, K. and Yapıcı, R. 2014. Investigation of Effects of Scale and Surface Roughness on Efficiency of Water Jet Pumps Using CFD. Engineering Applications of Computational Fluid Mechanics, 8(1), pp.14-25.
46. Kim, D. G. and Park, J. H. 2005. Analysis of flow structure over ogee spillway in Consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil Engineering, 9(2), pp.161-169.
47. Pfister, M., Battisacco, E., De Cesare, G. and Schleiss, A. J. 2013a. Scale effects related to the rating curve of cylindrically crested Piano Key weirs. In: Second International workshop on labyrinth and piano key weirs, Chatou, Paris, France.
48. Shaymaa AM.H.A, Riyadh Z.A, 2013. Study the numerical simulation of two-phase flow over Mandali Dam's ogee spillway.
49. Assim M.L, Ammar H.K, Atheer S.A 2022. Study the Water Flow Simulation with Computational Fluid Dynamics (CFD).
Published
Issue
Section
License
Copyright (c) 2024 Humam Khalid Ibrahim, Ammar Hatem Kamel (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.