Electrochemical Sensors based on Conductive Polymers Incorporate of Nano Material for the Detection of Hydrogen Peroxide (H2O2)

Authors

  • Malak Wad Dep. of polymer and petrochemical industries, College of Materials Engineering, University of Babylon, Iraq Author
  • Asra A. Hussein Dep. of polymer and petrochemical industries, College of Materials Engineering, University of Babylon, Iraq Author
  • Mohammed H. Almaamori 3Dep.of Al- mustaqbal university, Babylon, Iraq Author

DOI:

https://doi.org/10.56294/sctconf2024850

Keywords:

Polyaniline, Semiconducting (Okra Plant, Silver Nanoparticles, Hydrogen Peroxide Monitoring, Electrochemical

Abstract

Hydrogen peroxide (H2O2) plays a crucial role in various industries but poses a risk to human health when present in an uncontrolled manner. Hence, it is imperative to develop straightforward, cost-effective, and swift analytical methods for the detection and monitoring of H2O2. This study proposes a detector consisting of polyaniline-doped silver nanoparticles (Ag NPs), utilising a nanostructured okra semiconductor as a sensing material for H2O2 detection. The obtained results indicated that the addition of silver nanoparticles (Ag NPs) (at particle size 30 nm) into the mixture at different concentrations (1, 5, and 10 wt%) and voltages (1,4V–3V) led to good electrochemical performance. The prepared sensor at the Ag nanoparticle weight concentration (10 wt%) proved to have optimal performance. This configuration exhibited a clear and reliable signal response across a broad spectrum of currents at different concentrations of H2O2

References

1. E. Katz, I. Willner, and J. Wang, “Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles,” Electroanalysis, vol. 16, no. 1–2, pp. 19–44, Jan. 2004, doi: 10.1002/elan.200302930.

2. Y. Fang, Y. Xu, and P. He, “DNA Biosensors Based on Metal Nanoparticles,” J. Biomed. Nanotechnol., vol. 1, no. 3, pp. 276–285, Sep. 2005, doi: 10.1166/jbn.2005.044.

3. G. G. Wildgoose, C. E. Banks, and R. G. Compton, “Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications,” Small, vol. 2, no. 2, pp. 182–193, Feb. 2006, doi: 10.1002/smll.200500324.

4. R. Viswambari Devi, M. Doble, and R. S. Verma, “Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors,” Biosens. Bioelectron., vol. 68, pp. 688–698, Jun. 2015, doi: 10.1016/j.bios.2015.01.066.

5. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, and L. Niu, “Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing,” Biosens. Bioelectron., vol. 25, no. 5, pp. 1070–1074, Jan. 2010, doi: 10.1016/j.bios.2009.09.024.

6. Z. Zhang, J. Jia, Y. Lai, Y. Ma, J. Weng, and L. Sun, “Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells,” Bioorg. Med. Chem., vol. 18, no. 15, pp. 5528–5534, Aug. 2010, doi: 10.1016/j.bmc.2010.06.045.

7. Ş. Alpat, S. K. Alpat, Z. Dursun, and A. Telefoncu, “Development of a new biosensor for mediatorless voltammetric determination of hydrogen peroxide and its application in milk samples,” J. Appl. Electrochem., vol. 39, no. 7, pp. 971–977, Jul. 2009, doi: 10.1007/s10800-009-9776-7.

8. M. Tarvin, B. McCord, K. Mount, K. Sherlach, and M. L. Miller, “Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode,” J. Chromatogr. A, vol. 1217, no. 48, pp. 7564–7572, Nov. 2010, doi: 10.1016/j.chroma.2010.10.022.

9. G.-J. Zhou, G. Wang, J.-J. Xu, and H.-Y. Chen, “Reagentless chemiluminescence biosensor for determination of hydrogen peroxide based on the immobilization of horseradish peroxidase on biocompatible chitosan membrane,” Sensors Actuators B Chem., vol. 81, no. 2–3, pp. 334–339, Jan. 2002, doi: 10.1016/S0925-4005(01)00978-9.

10. K. Zhang, “Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst,” Talanta, vol. 51, no. 1, pp. 179–186, Jan. 2000, doi: 10.1016/S0039-9140(99)00277-5.

11. B. Tang and Y. Wang, “Spectrofluorimetric determination of both hydrogen peroxide and OOH in polyethylene glycols (PEGs) using 2-hydroxy-1-naphthaldehyde thiosemicarbazon (HNT) as the substrate for horseradish peroxidase (HRP),” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 59, no. 12, pp. 2867–2874, Oct. 2003, doi: 10.1016/S1386-1425(03)00107-0.

12. M. Rao, “Thallimetric oxidations—V Titrimetric and spectrophotometric determination of hydrogen peroxide,” Talanta, vol. 37, no. 7, pp. 753–755, Jul. 1990, doi: 10.1016/0039-9140(90)80107-Q.

13. Z. Taha and J. Wang, “Electrocatalysis and flow detection at a glassy carbon electrode modified with a thin film of oxymanganese species,” Electroanalysis, vol. 3, no. 3, pp. 215–219, Apr. 1991, doi: 10.1002/elan.1140030313.

14. D.-J. Lee, S.-W. Choi, and Y. T. Byun, “Room temperature monitoring of hydrogen peroxide vapor using platinum nanoparticles-decorated single-walled carbon nanotube networks,” Sensors Actuators B Chem., vol. 256, pp. 744–750, Mar. 2018, doi: 10.1016/j.snb.2017.10.001.

15. H. Çelik Kazıcı, A. Caglar, T. Aydogmus, N. Aktas, and H. Kivrak, “Microstructured prealloyed Titanium-Nickel powder as a novel nonenzymatic hydrogen peroxide sensor,” J. Colloid Interface Sci., vol. 530, pp. 353–360, Nov. 2018, doi: 10.1016/j.jcis.2018.06.079.

16. M. Guler, V. Turkoglu, A. Kivrak, and F. Karahan, “A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@CeO2-NH2 nanocomposites modified glassy carbon electrode,” Mater. Sci. Eng. C, vol. 90, pp. 454–460, Sep. 2018, doi: 10.1016/j.msec.2018.04.084.

17. S. Palsaniya, B. L. Jat, and S. Mukherji, “Amperometry sensor for real time detection of hydrogen peroxide adulteration in food samples,” Electrochim. Acta, vol. 462, p. 142724, Sep. 2023, doi: 10.1016/j.electacta.2023.142724.

18. Bohlooli, A. Anagri, and S. Mori, “Development of carbon-based metal free electrochemical sensor for hydrogen peroxide by surface modification of carbon nanowalls,” Carbon N. Y., vol. 196, pp. 327–336, Aug. 2022, doi: 10.1016/j.carbon.2022.05.002.

19. Abdelwahab and Y.-B. Shim, “Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite,” Sensors Actuators B Chem., vol. 201, pp. 51–58, Oct. 2014, doi: 10.1016/j.snb.2014.05.004.

20. K. Settu, Y.-C. Lai, and C.-T. Liao, “Carbon nanotube modified laser-induced graphene electrode for hydrogen peroxide sensing,” Mater. Lett., vol. 300, p. 130106, Oct. 2021, doi: 10.1016/j.matlet.2021.130106.

21. Skiba, M. I., Vorobyova, V. I., and Kosogina, I. V., 2020, “Preparation of Silver Nanoparticles in a Plasma-Liquid System in the Presence of PVA: Antimicrobial, Catalytic, and Sensing Properties,” Journal of Chemistry, 2020, pp. 1–9.

22. Dhara, K.; Mahapatra, D. R. Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci. 2019, 54 (19), 12319−12357.

23. Trujillo, R. M.; Barraza, D. E.; Zamora, M. L.; Cattani-Scholz, A.; Madrid, R. E. Nanostructures in Hydrogen Peroxide Sensing. Sensors (Basel) 2021, 21 (6), 2204.

24. Song, E.; Tortorich, R. P.; da Costa, T. H.; Choi, J. W. Inkjet Printing of Conductive Polymer Nanowire Network on Flexible Substrates and Its Application in Chemical Sensing. Microelectron. Eng. 2015, 145, 143−148.

25. Huang, J. L.; Fang, X. F.; Liu, X.; Lu, S. Y.; Li, S. X.; Yang, Z. X.; Feng, X. High-Linearity Hydrogen Peroxide Sensor Based on Nanoporous Gold Electrode. J. Electrochem. Soc. 2019, 166 (10), B814− B820.

26. Priyanga, N.; Raja, A. S.; Pannipara, M.; Al-Sehemi, A. G.; Phang, S. M.; Xia, Y.; Tsai, S. Y.; Annaraj, J.; Sambathkumar, S.; Kumar, G. G. Hierarchical Mns@Mos2 Architectures on Tea Bag Filter Paper for Flexible, Sensitive, and Selective Non Enzymatic Hydrogen Peroxide Sensors. J. Alloys Compd. 2021, 855, 157103.

27. Xu, W.; Liu, J.; Wang, M.; Chen, L.; Wang, X.; Hu, C. Direct Growth of Mnooh Nanorod Arrays on a Carbon Cloth for High- Performance Non-Enzymatic Hydrogen Peroxide Sensing. Anal. Chim. Acta 2016, 913, 128−136.

28. Vahidpour, F.; Oberlander, J.; Schoning, M. J. Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes. Phys. Status Solidi A 2018, 215 (15), 1800044.

29. Maier, D.; Laubender, E.; Basavanna, A.; Schumann, S.; Güder, F.; Urban, G. A.; Dincer, C. Towards Continuous Monitoring of Breath Biochemistry: Paper Based Wearable Sensor for Real-Time Hydrogen Peroxide Measurement in Simulated Breath. ACS Sensors 2019, 4, 2945.

30. Dağcı Kıranşan, K.; Aksoy, M.; Topçu, E. Flexible and Freestanding Catalase-Fe 3 O 4 /Reduced Graphene Oxide Paper: Enzymatic Hydrogen Peroxide Sensor Applications. Mater. Res. Bull. 2018, 106, 57−65.

31. Giaretta, J. E.; Oveissi, F.; Dehghani, F.; Naficy, S. Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection. Adv. Mater. Technol. 2021, 6 (4), 2001148.

32. Gholami, M., & Koivisto, B. (2019). A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion. Applied Surface Science, 467, 112-118.

33. Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible Graphene- Based Wearable Gas and Chemical Sensors. ACS Appl. Mater. Interfaces 2017, 9 (40), 34544−34586.

Downloads

Published

2024-01-01

How to Cite

1.
Wad M, Hussein AA, Almaamori MH. Electrochemical Sensors based on Conductive Polymers Incorporate of Nano Material for the Detection of Hydrogen Peroxide (H2O2). Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Jan. 1 [cited 2024 Nov. 21];3:850. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/922