A Comparative Study on Dip Coating and Corrosion Behavior of Ti-13Zr-13Nb and Commercially Pure Titanium Alloys Coated with YSZ by Taguchi Design.
DOI:
https://doi.org/10.56294/sctconf2024847Keywords:
Dip Coating, Taguchi, Titanium Alloys, YSZ, CorrosionAbstract
This work evaluates experimentally the corrosion and tip testing of Ti-13Zr-13Nb joint implant alloys and commercially pure titanium (cp-Ti) covered with YSZ nanoceramic. Through the use of the Taguchi design of experiments (DOE) approach, the dip coating process produced a thin sticky covering. The effects of temperature, YSZ concentration, duration, and the level of Ti alloy substrate grinding during dip coating were investigated using a L9-type orthogonal Taguchi array to determine the deposition yield. The thickness and adhesion tests that were utilized to optimize the dip coating conditions served as the input data, and the Ti alloys were coated using the ideal dip coating technique parameters as previously mentioned. For commercial Ti, the ideal values for YSZ coating thickness and adhesion were 60°C, 10 seconds, 10 % concentration, and 250 degrees of grinding; correspondingly, for Ti-13Zr-13Nb, the ideal values were 60°C, 10 seconds, 15 % concentration, and 400 degrees of grinding. For both Cp-Ti and Ti-13Zr-13Nb, the obtained thickness and removal area (adhesion) were 58,5 µm and 11,45 %, respectively, and 69,5µm and 9,33 %, respectively. High-resolution scanning electron microscopy (FE-SEM) images were used to study the coated alloys; optical microscopy and AFM were used to identify the microstructure and thickness measurements of the coated surfaces; EDAX was used to analyze the coating composition; and XRD was used to analyze the formed phases. The optimized coated Ti alloys' corrosion resistance was investigated in simulated body fluid (SBF) using electrochemical methods such as cyclic polarization and Tafel polarization, and the adhesion strength of the coatings was measured using a tip tester. The following corrosion-resistant values were used to compare Ti-13Zr-13Nb and coated Cp-Ti: In Ringer's solution at 37°C, both coating alloys—Cp-Ti and Ti-13Zr-13Nb—improved corrosion resistance; however, the coated Ti-13Zr-13Nb alloy demonstrated greater corrosion resistance than the coated Cp-Ti alloy (5,417×10-3 and 1,042×10-2, respectively)
References
1. Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F.Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019, 94,112–131.
2. K. Wang, D. Xiong, Y. Deng, Y. Niu, Ultra-lubricated surface of Ti6Al4V fabricated with combination of porous TiO2 layer, ultra-high molecular weight polyethylene film and hydrophilic polymer brushes, Mater. Des. 114 (2017) 18–24, https://doi.org/10.1016/j.matdes.2016.10.032.
3. S. Ghosh, S. Abanteriba, Status of surface modification techniques for artificial hip implants, Sci. Technol. Adv. Mater. 17 (2016) 715–735, https://doi.org/10.1080/14686996.2016.1240575.
4. J.B. Park, Bioceramics: Properties, Characterizations, and Applications, Springer Verlag, 2008, p. 192.
5. Khodaei, M.; Hossein Kelishadi, S. The e_ect of di_erent oxidizing ions on hydrogen peroxide treatment of titanium dental implant. Surf. Coat. Technol. 2018, 353, 158–162.
6. Ebrahimi, H. Esfahani, A. Fattah-alhosseini, O. Imantalab, In-vitro electrochemical study of TiB/TiB2 composite coating on titanium in Ringer’s solution, J. Alloys Compd. 765 (2018) 826–834, https://doi.org/10.1016/j.jallcom.2018.06.312.
7. Y. S. Tian, C. Z. Chen, S. T. Li, Q. H. Huo, Research progress on laser surface modification of titanium alloys, Appl. Surf. Sci. 242.1 (2005) 177-184.
8. Guleryuz, H., and H. Cimenoglu, Surface modification of a Ti–6Al–4V alloy by thermal oxidation, Surf. Coat. Technol. 192.2 (2005) 164-170
9. J. Guo, R.J. Padilla, W. Ambrose, I. J. De Kok, L.F. Cooper, The effect of hydrofluoric acid
10. Treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo, Biomaterials 28.36 (2007) 5418-5425.
11. H.W. Kim, H. E. Kim, and J. C. Knowles, Fluor-hydroxyapatite sol–gel coating on titanium
12. Substrate for hard tissue implants, Biomaterials 25.17 (2004) 3351-3358.
13. Ewald, S. K Glückermann, R. Thull and U. Gbureck, Antimicrobial titanium/silver PVD
14. Coatings on titanium, Biomed. Eng. Online 5.1 (2006) 22.
15. S. Varanasi, J. Ni, and D. M. Nelson, chemical vapor deposition process for depositing a titanium oxide coating, U.S. Patent No. 20,160,076,144. 17 Mar. 2016.
16. X. Liu, P. K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and relatedmaterials for biomedical applications, Mater. Sci. Eng. R. 47.3 (2004) 49-121.
17. Y. Bin, M. Mahjouri-Samani, C. M. Rouleau, D. B. Geohegana and K. Xiao, Low Temperature Synthesis of Hierarchical TiO2 Nanostructures for High Performance Perovskite Solar Cells, Phys. Chem. Chem. Phys. 18 (2016) 27067-27072.
18. K.S. Brammer, C. J. Frandsen, and S. Jin, TiO2 nanotubes for bone regeneration, Trends. Biotechnol. 30.6 (2012) 315-322.
19. S. Khorshidi, A. Solouk, H. Mirzadeh, S. Mazinani, J.M. Lagaron, S. Sharifi, S. Ramakrishna, A review of key challenges of electrospun scaffolds for tissue‐engineering applications, J. Tissue. Eng. Regen. Med. 10 (9) (2015) 715-738.
20. J. Ik Lim, B. Yu, K. Mi Woo, Y. Lee, Immobilization of TiO2 nanofibers on titanium plates for implant applications, Appl. Surf. Sci. 255.5 (2008) 2456-2460.
21. C. Dumitriu, A.B. Stoian, I. Titorencu, V. Pruna, V.V. Jinga, R.M. Latonen, J. Bobacka, I. Demetrescu, Electrospun TiO2 nanofibers decorated Ti substrate for biomedical application, Mater. Sci. Eng. C. 45(2014) 56-63.
22. X.Q. Cao,R.Vassen,S. Stöver, Ceramic-materials for thermal barrier coatings,J.Eur.Ceram.Soc.24(2004)1–10.
23. W.R. Chen,X.Wu,B.R.Marple,R.S.Lima,P.C. Patnaik,Pre-oxidation and TGO growth behavior of an air-plasma-sprayed thermal barrier coating,Surf.Coat.Technol.202(2008)3787–3796.
24. L. Besra, M. Liu, Prog. Mater. Sci. 52 (2007) 1.
25. J. Antony, F.J. Antony, Work Study 50 (2001) 141.
26. R.K. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers, The United States of America, 1990.
27. F. Pishbin, A. Simchi, M.P. Ryan, A.R. Boccaccini, J. Eur. Ceram. Soc. 30 (2010) 2963.
28. P. Nledengvist, S. Hogmark, Experiences from scratch testing of tribological PVD coatings, Tribol. Int. 30 (7) (1997) 507–516.
29. M. Goudarzi, F. Batmanghelich, A. Afshar, A. Dolati, G. Mortazavi, Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: corrosion and sintering temperature, Appl. Surf. Sci. 301 (2014) 250–257.
30. S. Mahmoodi, L. Sorkhi, M. Farrokhi-Rad, T. Shahrabi, Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols, Surf. Coat. Technol. 216 (2013) 106–114.
31. A.A. Abdeltawab, M.A. Shoeib, S.G. Mohamed, Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions, Surf. Coat. Technol. 206 (2011) 43–50.
32. Molaei, M. Yari,M.R. Afshar, Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films Appl. Clay Sci. 135 (2017) 75–81.
33. M. Farrokhi-Rad, S.K. Loghmani, T. Shahrabi, S. Khan mohammadi, Electrophoretic deposition of hydroxyapatite nanostructured coatings with controlled porosity, J. Eur. Ceram. Soc. 34 (2014) 97–106.
Published
Issue
Section
License
Copyright (c) 2024 Marwan B. Hussein, Ali M. Mustafa , Makarim H. Abdulkareem (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.