Use of the Zebrafish Model as a tool to evaluate the anti- inflammatory and antioxidant activity of molecules. Literature Review

Authors

  • Cristina Arteaga Universidad Técnica de Ambato, Facultad de Ciencias de la Salud, Carrera de Nutrición y Dietética, Ambato, Ecuador Author https://orcid.org/0000-0002-9914-7648
  • Luis Felipe Contreras Universidad Técnica de Ambato, Facultad de Ingeniería Civil y Mecánica, Ambato, Ecuador Author
  • Ruth Borja Universidad Técnica de Ambato, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología, Ambato, Ecuador Author
  • Carolina Campoverde Universidad Técnica de Ambato. Facultad de Ciencias de la Salud, Carrera de Medicina, Ambato, Ecuador Author
  • Alberto Bustillos Universidad Técnica de Ambato. Facultad de Ciencias de la Salud, Carrera de Medicina, Ambato, Ecuador Author https://orcid.org/0000-0002-4409-8113

DOI:

https://doi.org/10.56294/sctconf2024793

Keywords:

Zebrafish, Anti-Inflammatory, Antioxidant, Model.

Abstract

Introduction: the evaluation of antioxidant and anti-inflammatory properties in biological models is crucial for advancing pharmacological research. The zebrafish model (Danio rerio) is increasingly used due to its genetic similarity to humans and its translational relevance in drug discovery. This work synthesizes the existing literature on the use of zebrafish as a model for testing the efficacy of various substances with antioxidant and anti-inflammatory properties.

Methods: a comprehensive literature review was conducted using the Web of Science database. Search terms included "zebra fish," "antioxidant," "anti-inflammatory," "model," and "Danio rerio." Out of fifty articles initially reviewed, thirty-three met the inclusion criteria and were analyzed further. These articles were categorized based on the source of the substances tested, including plant extracts, compounds extracted from plants, chemical compounds, and other sources.

Results: the reviewed studies utilized a variety of methods to assess the antioxidant and anti-inflammatory effects in zebrafish, including observational assays and molecular techniques. The substances tested were derived mainly from plant extracts and chemical compounds. The analysis highlights significant variability in methodology and outcomes, reflecting both the versatility and the challenges of using zebrafish in this type of research.

Conclusions: the zebrafish model is a valuable tool for studying antioxidant and anti-inflammatory properties, offering several advantages including genetic tractability, cost-effectiveness, and the ability to observe phenotypic changes in vivo. However, standardization of methodologies and a deeper understanding of the model’s limitations are essential for maximizing its utility in biomedical research. This review provides a foundation for future studies aiming to optimize zebrafish use in evaluating therapeutic agents.

References

1. Camacho-Escobar MA, Ramos-Ramos DA, Ávila-Serrano NY, Sánchez-Bernal EI, López-Garrido SJ. Las defensas físico-químicas de las plantas y su efecto en la alimentación de los rumiantes. REVISTA TERRA LATINOAMERICANA. 2020 May 18;38(2):443–53.

2. Camacho-Romero OI, Melgarejo-Gómez S, De-la-Rosa-Torres C. Extracción y evaluación de los metabolitos secundarios de extractos etéreos del fruto Syzygium cumini (Jambool). Revista Tecnología en Marcha. 2017 Apr 21;30(1):113.

3. Castro GD. Dependencia de la dosis en los mecanismos de toxicidad y la evaluación de riesgo en toxicología. Acta Bioquimica Clinica Latinoamericana [Internet]. 2013 [cited 2022 Nov 21]; Available from: http://www.scielo.org.ar/scielo.php?pid=S0325-29572013000300010&script=sci_abstract

4. Saeidnia S, Manayi A, Abdollahi M. From in vitro Experiments to in vivo and Clinical Studies; Pros and Cons. Curr Drug Discov Technol. 2016 Jan 22;12(4):218–24.

5. Moctezuma Viera KR. Utilización de animales en la investigación biomédica y médica. Rev Iberoam Bioet. 2020 Feb 27;(12):01–19.

6. Escobedo-Moratilla A, Barba R, Pérez-Urizar J. Modelos preclínicos in vitro e in vivo para la evaluación de la actividad biológica en estudios de biocomparabilidad. Gac Med Mex [Internet]. 2015 [cited 2022 Nov 26];151:376–86. Available from: https://www.anmm.org.mx/GMM/2015/n3/GMM_151_2015_3_377-386.pdf

7. Acevedo Fernández JJ, Angeles Chimal JS, Rivera HM, Petricevich López VL, Nolasco Quintana NY, Collí Magaña DY, et al. Modelos in vitro para la evaluación y caracterización de péptidos bioactivos. In: Bioactividad de péptidos derivados de proteínas alimentarias. OmniaScience; 2013. p. 29–82.

8. Fina BL, Lombarte M, Rigalli A. Research a natural phenomenon: Studies in vivo, in vitro or in silico? | Investigación de un fenómeno natural: Estudios in vivo, in vitro o in silico? Actualizaciones En Osteologia [Internet]. 2013 [cited 2022 Nov 26];9(3):294–9. Available from: http://www.osteologia.org.ar/files/pdf/rid34_Fina.pdf

9. Lawrence C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture. 2007 Sep;269(1–4):1–20.

10. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell. 2008 Feb;2(2):183–9.

11. Espinosa MB. The Zebrafish : A Tool in Education Resumen Introducción. Revista de Educación En Biología. 2016;19:11–8.

12. Kettleborough RNW, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013 Apr 17;496(7446):494–7.

13. Arteaga C, Bustillos A, Gómez-Catalán J. Migración de neutrófilos en larvas de pez cebra expuestos a extractos de sofrito de tomate. Arch Latinoam Nutr. 2020 Sep 1;70(3):182–90.

14. Boeri P, Piñuel L, Dalzotto D, Monasterio R, Fontana A, Sharry S, et al. Argentine Patagonia barberry chemical composition and evaluation of its antioxidant capacity. J Food Biochem. 2020 Jul 28;44(7).

15. Cholan PM, Han A, Woodie BR, Watchon M, Kurz AR, Laird AS, et al. Conserved anti-inflammatory effects and sensing of butyrate in zebrafish. Gut Microbes. 2020 Nov 9;12(1):1824563.

16. Perumal S, Gopal Samy M v., Subramanian D. Developmental toxicity, antioxidant, and marker enzyme assessment of swertiamarin in zebrafish ( Danio rerio ). J Biochem Mol Toxicol. 2021 Sep 12;35(9).

17. Poornima S, Nagarjun N, Ponmurugan P, Gnanamangai BM, Narasimman S. Toxicity and antiinflammatory study of Parmotrema austrosinense extract against oxozalone induced intestinal inflammation in zebrafish (Danio rerio) model. Biocatal Agric Biotechnol. 2019 Sep;21:101278.

18. Pradeep PS, Manisha S, Monica Amala Nayaki J, Sivaraman D, Selvaraj R, Seeni S. Potential antioxidant and anti-inflammatory action of Hypericum hookerianum extracts in a liposome system evaluated with zebrafish embryos. J Microencapsul. 2019 Aug 19;1–10.

19. Mohamad Shariff NFS, Singgampalam T, Ng CH, Kue CS. Antioxidant activity and zebrafish teratogenicity of hydroalcoholic Moringa oleifera L. leaf extracts. British Food Journal. 2020 Aug 11;122(10):3129–37.

20. Udaya S, Babu N, Nanjappa DP, Kalladka K, Chakraborty G, Chakraborty A. Evaluation of Toxicity and Antioxidant Property of Cassia fistula Stem Bark Extracts in Zebrafish. Journal of Health and Allied Sciences NU. 2020 Dec 20;10(03):109–15.

21. Wang W, Liu J. Efficient extraction, antioxidant activities and anti-inflammation of polysaccharides from Notopterygium franchetii Boiss. Carbohydr Polym. 2020 Nov;248:116783.

22. Arteaga C, Boix N, Teixido E, Marizande F, Cadena S, Bustillos A. The Zebrafish Embryo as a Model to Test Protective Effects of Food Antioxidant Compounds. Molecules. 2021 Sep.

23. Cho SH, Heo SJ, Yang HW, Ko EY, Jung MS, Cha SH, et al. Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-Induced Oxidative Stress In Vitro and In Vivo. J Microbiol Biotechnol. 2019 Aug 28;29(8):1193–203.

24. Endo Y, Muraki K, Fuse Y, Kobayashi M. Evaluation of Antioxidant Activity of Spice-Derived Phytochemicals Using Zebrafish. Int J Mol Sci. 2020 Feb 7;21(3):1109.

25. Kang MC, Kim KN, Kang SM, Yang X, Kim EA, Song CB, et al. Protective effect of dieckol isolated from Ecklonia cava against ethanol caused damage in vitro and in zebrafish model. Environ Toxicol Pharmacol. 2013 Nov;36(3):1217–26.

26. Issac PK, Guru A, Velayutham M, Pachaiappan R, Arasu MV, Al-Dhabi NA, et al. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci. 2021 Oct;283:119864.

27. Roberto VP, Surget G, le Lann K, Mira S, Tarasco M, Guérard F, et al. Antioxidant, Mineralogenic and Osteogenic Activities of Spartina alterniflora and Salicornia fragilis Extracts Rich in Polyphenols. Front Nutr. 2021 Aug 18;8.

28. Rajasekar P, Palanisamy S, Anjali R, Vinosha M, Elakkiya M, Marudhupandi T, et al. Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. Int J Biol Macromol. 2019 Dec;141:809–21.

29. Kim HS, Wang L, Fernando IPS, Je JG, Ko SC, Kang MC, et al. Antioxidant efficacy of (−)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. J Appl Phycol. 2020 Oct 25;32(5):3341–8.

30. Xia G, Li X, Zhang Z, Jiang Y. Effect of food processing on the antioxidant activity of flavones from Polygonatum odoratum (Mill.) Druce. Open Life Sci. 2021 Jan 29;16(1):92–101.

31. Nguyen TH, Le HD, Nguyen Thi Kim T, Pham The H, Nguyen TM, Cornet V, et al. Anti–Inflammatory and Antioxidant Properties of the Ethanol Extract of Clerodendrum Cyrtophyllum Turcz in Copper Sulfate-Induced Inflammation in Zebrafish. Antioxidants. 2020 Feb 25;9(3):192.

32. Pradeep PS, Manisha S, Monica Amala Nayaki J, Sivaraman D, Selvaraj R, Seeni S. Potential antioxidant and anti-inflammatory action of Hypericum hookerianum extracts in a liposome system evaluated with zebrafish embryos. J Microencapsul. 2019 Aug 19;1–10.

33. Arteaga C, Boix N, Teixido E, Marizande F, Cadena S, Bustillos A. The Zebrafish Embryo as a Model to Test Protective Effects of Food Antioxidant Compounds. Molecules. 2021 Sep 24;26(19):5786.

34. Kim HS, Wang L, Fernando IPS, Je JG, Ko SC, Kang MC, et al. Antioxidant efficacy of (−)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. J Appl Phycol. 2020 Oct 25;32(5):3341–8.

35. Xia G, Li X, Zhang Z, Jiang Y. Effect of food processing on the antioxidant activity of flavones from Polygonatum odoratum (Mill.) Druce. Open Life Sci. 2021 Jan 29;16(1):92–101.

36. Roberto VP, Surget G, le Lann K, Mira S, Tarasco M, Guérard F, et al. Antioxidant, Mineralogenic and Osteogenic Activities of Spartina alterniflora and Salicornia fragilis Extracts Rich in Polyphenols. Front Nutr. 2021 Aug 18;8.

37. Jayawardena TU, Wang L, Sanjeewa KKA, Kang SI, Lee JS, Jeon YJ. Antioxidant Potential of Sulfated Polysaccharides from Padina boryana; Protective Effect against Oxidative Stress in In Vitro and In Vivo Zebrafish Model. Mar Drugs. 2020 Apr 14;18(4):212.

38. Cho SH, Heo SJ, Yang HW, Ko EY, Jung MS, Cha SH, et al. Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-InducedOxidative Stress In Vitro and In Vivo. J Microbiol Biotechnol. 2019 Aug 28;29(8):1193–203.

39. Kim HS, Wang L, Fernando IPS, Je JG, Ko SC, Kang MC, et al. Antioxidant efficacy of (−)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. J Appl Phycol. 2020 Oct 25;32(5):3341–8.

40. Endo Y, Muraki K, Fuse Y, Kobayashi M. Evaluation of Antioxidant Activity of Spice-Derived Phytochemicals Using Zebrafish. Int J Mol Sci. 2020 Feb 7;21(3):1109.

41. Rangasamy B, Hemalatha D, Shobana C, Nataraj B, Ramesh M. Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere. 2018 Dec;213:423–33.

42. Carrillo W, Gómez-Ruiz JA, Miralles B, Ramos M, Barrio D, Recio I. Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. European Food Research and Technology. 2016 Oct 1;242(10):1777–85.

43. Vong LB, Kobayashi M, Nagasaki Y. Evaluation of the Toxicity and Antioxidant Activity of Redox Nanoparticles in Zebrafish ( Danio rerio ) Embryos. Mol Pharm. 2016 Sep 6;13(9):3091–7.

44. Ren F, Huang Y, Tao Y, Ji C, Aniagu S, Jiang Y, et al. Resveratrol protects against PM2.5-induced heart defects in zebrafish embryos as an antioxidant rather than as an AHR antagonist. Toxicol Appl Pharmacol. 2020 Jul;398:115029.

45. Jiao Y, Tao Y, Yang Y, Diogene T, Yu H, He Z, et al. Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver. Environmental Pollution. 2020 Feb;257:113517.

46. Alak G, Ucar A, Parlak V, Yeltekin AÇ, Özgeriş FB, Atamanalp M, et al. Antioxidant Potential of Ulexite in Zebrafish Brain: Assessment of Oxidative DNA Damage, Apoptosis, and Response of Antioxidant Defense System. Biol Trace Elem Res. 2021 Mar 15;199(3):1092–9.

47. dos Santos MM, de Macedo GT, Prestes AS, Ecker A, Müller TE, Leitemperger J, et al. Modulation of redox and insulin signaling underlie the anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish. Free Radic Biol Med. 2020 Oct;158:20–31.

48. Sant KE, Sinno PP, Jacobs HM, Timme-Laragy AR. Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, Danio rerio. Aquatic Toxicology. 2018 May;198:92– 102.

49. Valcarce DG, Riesco MF, Martínez-Vázquez JM, Robles V. Diet Supplemented with Antioxidant and AntiInflammatory Probiotics Improves Sperm Quality after Only One Spermatogenic Cycle in Zebrafish Model. Nutrients. 2019 Apr 13;11(4):843.

Downloads

Published

2024-01-01

How to Cite

1.
Arteaga C, Contreras LF, Borja R, Campoverde C, Bustillos A. Use of the Zebrafish Model as a tool to evaluate the anti- inflammatory and antioxidant activity of molecules. Literature Review. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Jan. 1 [cited 2024 Dec. 2];3:793. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/971